摘要:
A method is presented for fabricating an electrically isolated MEMS device having a conductive outer MEMS element, and an inner movable MEMS element spaced apart from the conductive outer MEMS element. The inner element includes a nonconductive base having a plurality of conductive structures extending therefrom. The conductive components are formed by plating a conductive material into a pre-formed mold which defines the shape of the conductor.
摘要:
A method for fabricating MEMS structure includes etching a recess in an upper surface of a substrate that is bonded to a wafer that ultimately forms the MEMS structure. Accordingly, once the etching processes of the wafer are completed, the recess facilitates the release of an internal movable structure within the fabricated MEMS structure without the use of a separate sacrificial material.
摘要:
A method for fabricating an electrically isolated MEMS device having an outer stationary MEMS element and an inner movable MEMS element is provided that does not use a sacrificial layer. Rather, a pair of spacers are defined on the outer portions of the upper surface of a conductive wafer, and an insulating material is deposited thereon. The spacers are attached to a substrate to define an internal void therein. The wafer is then patterned to form the outer MEMS element as well as a conductive member for the inner MEMS element, separated from the outer MEMS element by a gap. A portion of the insulating layer that is disposed in the gap is then removed, thereby releasing the inner MEMS element from the stationary MEMS element.
摘要:
A microelectromechanical system (MEMS) device is used to transfer power from a source generator to a power generator that delivers electrical power to a load, while maintaining electrical isolation between the source generator and power generator for size critical applications where transformers or coupling capacitors would not be practical, but where electrical isolation is desired.
摘要:
A method for fabricating an electrically isolated MEMS device having an outer stationary MEMS element and an inner movable MEMS element is provided that does not use a sacrificial layer. Rather, a pair of spacers are defined on the outer portions of the upper surface of a conductive wafer, and an insulating material is deposited thereon. The spacers are attached to a substrate to define an internal void therein. The wafer is then patterned to form the outer MEMS element as well as a conductive member for the inner MEMS element, separated from the outer MEMS element by a gap. A portion of the insulating layer that is disposed in the gap is then removed, thereby releasing the inner MEMS element from the stationary MEMS element.
摘要:
A MEMS structure is provided having a cap that encapsulates and protects the fragile components of the device, while having an electrical trace embedded in a nonconductive substrate. The electrical trace includes a first terminal end that is exposed to the peripheral region of the device, and a second end that is connected to the MEMS structure to facilitate operation of the device.
摘要:
A microelectromechanical system (MEMS) strain gauge includes at least one flexible arm that can be caused to oscillate. Transverse strain on the arm changes the resonant frequency of the arm. A detector communicating with the flexible arm may detect the frequency of oscillation to provide, an indication of the transverse strain of the substrate.
摘要:
Microelectromechanical (MEMS) switches are used to implement a flying capacitor circuit transferring of electrical power while preserving electrical isolation for size critical applications where transformers or coupling capacitors would not be practical. In one embodiment, the invention may be used to provide input circuits that present a programmable input impedance. The circuit may be modified to provide for power regulation.
摘要:
A method for fabricating an electrically isolated MEMS device having an outer stationary MEMS element and an inner movable MEMS element is provided that does not use a sacrificial layer. Rather, a pair of spacers are defined on the outer portions of the upper surface of a conductive wafer, and an insulating material is deposited thereon. The spacers are attached to a substrate to define an internal void therein. The wafer is then patterned to form the outer MEMS element as well as a conductive member for the inner MEMS element, separated from the outer MEMS element by a gap. A portion of the insulating layer that is disposed in the gap is then removed, thereby releasing the inner MEMS element from the stationary MEMS element.
摘要:
A method for fabricating an electrically isolated MEMS device is provided that uses surface fabrication techniques to form a conductive stationary MEMS element, and a movable MEMS element spaced apart from the conductive stationary MEMS element. The movable element includes a nonconductive base which provides for electrical isolation between a plurality of conductive members extending from the base. Modifications to the basic process permit the incorporation of a wafer-level cap which provides mechanical protection to the movable portions of the device.