摘要:
Myocardial electrical stability is assessed based on the derivation of an alternating ECG morphology index from a series of heartbeats. The ECG electrical signal waveform is digitized at a plurlaity of sample points for each of the series of beats. Sample point matrices from the digitized ECG signals are constructed and the alternating energy at each of the sample points for the series of beats is computed. The alternating energy over the entire set of sample points is summed to generate the total alternating energy. This total alternating energy is normalized with respect to the energy of the average waveform, the normalized value being the alternating ECG morphology index. Animal studies indicate a high negative correlation between cardiac electrical stability and the alternating ECG morphology index.
摘要:
One or more electrocardiographic signals are detected from a subject. The occurrence of alternans in the electrocardiographic signals are detected using one or more processors. One or more characteristics of detected alternans are determined. The determined characteristics of the detected alternans are analyzed to determine whether cardiac ischemia is present.
摘要:
A system and methodology are provided for using hierarchical groupings to organize governance, risk, and compliance (GRC) policies and rules. The groupings are based on categorizations that can be arbitrarily represented by both predetermined and user-defined hierarchical policy naming schemes. Once GRC regulatory and compliance policies and rules are grouped to accommodate company policies, testing can be designed around groups of policies and/or rules and scheduled to align with schedule and timing requirements. By allowing a policy or rule to be associated with multiple hierarchies, a single execution of a policy or rule can be associated with, managed from, and satisfy multiple regulatory and compliance needs with one effort.
摘要:
Perfusion measurement method. The method includes detecting a signal emanating from the tissue and processing the signal to detect fluctuations substantially spatially correlated on a length scale less than 1 centimeter. The fluctuations are then analyzed to obtain a measure of perfusion. In one embodiment, the detected fluctuations are substantially correlated with fluctuations of a biological parameter such as the cardiac cycle or the respiratory cycle.
摘要:
A method of reducing noise in a signal that represents a physiologic process includes obtaining multiple input signals, measuring a relationship between noise content of the input signals, and combining the input signals in consideration of the measured relationship to produce an output signal having low noise content. The multiple input signals may include, for example, two or more primary physiologic input signals or one or more primary physiologic input signals and two or more secondary input signals that represent noise. The method may further include dividing one or more ECG input signals and secondary input signals into set of segments, where each set of segments represents a beat of the ECG signal, measuring a relationship between noise content of corresponding points from successive sets of segments, and combining the input signals based on the measured relationship.
摘要:
The temporal pattern of cycle-to-cycle variability in physiologic waveforms, such as alternans, is assessed by applying transducers to a subject, recording physiologic signals, and analyzing the cycle-to-cycle variation in waveform morphology. Preferred embodiments include the application of physiologic stress to the subject in order to adjust heart rate to the desired range, real-time analysis of waveform variability, reduction in the effect of intercycle variability on waveform variability, improved techniques for determining the statistical significance of the amplitude of a temporal pattern of variability, handling of abnormal beats such as atrial and ventricular premature beats, and assessment of the statistical significance of a measured level of a temporal pattern of variability.
摘要:
A method and apparatus for estimating transfer functions among multiple physiologic or biologic signals in the presence of feedback. The invention comprises the injection of broad band purturbation into one or more of the subsystems under study, and measuring signals from the subsystems. These signals are transformed to generate a new set of n signals. Casual transfer functions between the signals and additive noise sources are used to represent the relationships between the n signals. Parametric system identification techniques are then used to characterize quantitatively at least two casual transfer functions and noise sources. This method and apparatus provides a powerful tool with which to characterize the interactions of subsystems in the presence of feedback.
摘要:
Myocardial electrical stability is assessed by sampling an ECG waveform at corresponding fiducial locations for a plurality of beats and creating a scatter plot of the i.sup.th sample versus the (i- 1)th sample. A parameter .lambda. is determined which minimizes the sum of the total distances of the points of the scatter plot to an equation x(i)= 4.lambda.x(i- 1)[ 1-x(i- 1)]. The value of the parameter .lambda. is related to the electrical stability of the heart.
摘要:
First cardiac signal data generated from measured heart beats of a subject is received. Characteristics of alternans occurring in the received first cardiac signal data are determined. Second cardiac signal data generated from measured heart beats of the subject after a change relating to an administration of a pharmacological agent is received. Characteristics of alternans occurring in the received second cardiac signal data are determined. The characteristics of alternans occurring in the received first cardiac signal data are compared with the characteristics of alternans occurring in the received second cardiac signal data.
摘要:
The present invention provides methods and apparatus for determining a dynamical property of the systemic or pulmonary arterial tree using long time scale information, i.e., information obtained from measurements over time scales greater than a single cardiac cycle. In one aspect, the invention provides a method and apparatus for monitoring cardiac output (CO) from a single blood pressure signal measurement obtained at any site in the systemic or pulmonary arterial tree or from any related measurement including, for example, fingertip photoplethysmography.According to the method the time constant of the arterial tree, defined to be the product of the total peripheral resistance (TPR) and the nearly constant arterial compliance, is determined by analyzing the long time scale variations (greater than a single cardiac cycle) in any of these blood pressure signals. Then, according to Ohm's law, a value proportional to CO may be determined from the ratio of the blood pressure signal to the estimated time constant. The proportional CO values derived from this method may be calibrated to absolute CO, if desired, with a single, absolute measure of CO (e.g., thermodilution). The present invention may be applied to invasive radial arterial blood pressure or pulmonary arterial blood pressure signals which are routinely measured in intensive care units and surgical suites or to noninvasively measured peripheral arterial blood pressure signals or related noninvasively measured signals in order to facilitate the clinical monitoring of CO as well as TPR.