摘要:
The invention relates to a marker structure for optical alignment of a substrate and provided thereon. The marker structure has a first reflecting surface at a first level and a second reflecting surface at a second level. A separation between the first level and the second level determines a phase depth condition. The marker structure further has an additional structure. The additional structure is arranged to modify the separation during manufacture of the marker structure. The invention further relates to a method of forming such a marker structure.
摘要:
The invention relates to a marker structure for optical alignment of a substrate and provided thereon. The marker structure has a first reflecting surface at a first level and a second reflecting surface at a second level. A separation between the first level and the second level determines a phase depth condition. The marker structure further has an additional structure. The additional structure is arranged to modify the separation during manufacture of the marker structure. The invention further relates to a method of forming such a marker structure.
摘要:
The invention relates to a marker structure for optical alignment of a substrate and provided thereon. The marker structure has a first reflecting surface at a first level and a second reflecting surface at a second level. A separation between the first level and the second level determines a phase depth condition. The marker structure further has an additional structure. The additional structure is arranged to modify the separation during manufacture of the marker structure. The invention further relates to a method of forming such a marker structure.
摘要:
An alignment mark on a substrate includes a periodic structure of a plurality of first elements and a plurality of second elements. The elements are arranged in an alternating repetitive sequence in a first direction. An overall pitch of the periodic structure is equal to a sum of a width of the first element and a width of the second element in the first direction. Each first element has a first periodic sub-structure with a first sub-pitch and each second element has a second periodic sub-structure with second sub-pitch. An optical property of the first element for interaction with a beam of radiation having a wavelength λ is different from the optical property of the second element. The overall pitch is larger than the wavelength λ, and each of the first and the second sub-pitch is smaller than the wavelength.
摘要:
The position of a product is measured using an alignment mark on the product. Radiation is transmitted towards the alignment mark and diffracted by a pattern in the alignment mark. Position information is determined from phase relations of the diffracted radiation. The alignment mark comprises a set of mutually parallel conductor tracks from which the diffracted radiation is collected, the pattern being defined by a pattern of variation of the pitch between successive tracks as a function of position along the surface of the product. Thus, for example the pattern comprises alternating first and second areas wherein the pitch has a first and second value, respectively. Because the tracks in the different parts of the pattern, such as the first and second areas, are parallel to each other improved measurements are possible.
摘要:
An alignment mark on a substrate includes a periodic structure of a plurality of first elements and a plurality of second elements. The elements are arranged in an alternating repetitive sequence in a first direction. An overall pitch of the periodic structure is equal to a sum of a width of the first element and a width of the second element in the first direction. Each first element has a first periodic sub-structure with a first sub-pitch and each second element has a second periodic sub-structure with second sub-pitch. An optical property of the first element for interaction with a beam of radiation having a wavelength λ is different from the optical property of the second element. The overall pitch is larger than the wavelength λ, and each of the first and the second sub-pitch is smaller than the wavelength.
摘要:
The position of a product is measured using an alignment mark on the product. Radiation is transmitted towards the alignment mark and diffracted by a pattern in the alignment mark. Position information is determined from phase relations of the diffracted radiation. The alignment mark comprises a set of mutually parallel conductor tracks from which the diffracted radiation is collected, the pattern being defined by a pattern of variation of the pitch between successive tracks as a function of position along the surface of the product. Thus, for example the pattern comprises alternating first and second areas wherein the pitch has a first and second value, respectively. Because the tracks in the different parts of the pattern, such as the first and second areas, are parallel to each other improved measurements are possible.
摘要:
A method for manufacturing a marker structure including line elements and trench elements arranged in a repetitive order includes filling the trench elements with silicon dioxide and leveling the marker structure. A sacrificial oxide layer is grown on the semiconductor surface, and a first subset of the line elements is exposed to an ion implantation beam including a dopant species to dope and change an etching rate of the first subset. The substrate is annealed to activate the dopant species, and the semiconductor surface is etched to remove the sacrificial oxide layer and to level the first subset to a first level and to create a topology such that the first subset has a first level differing from a second level of a surface portion of the marker structure different from the first subset.
摘要:
A method for manufacturing a marker structure including line elements and trench elements arranged in a repetitive order includes filling the trench elements with silicon dioxide and leveling the marker structure. A sacrificial oxide layer is grown on the semiconductor surface, and a first subset of the line elements is exposed to an ion implantation beam including a dopant species to dope and change an etching rate of the first subset. The substrate is annealed to activate the dopant species, and the semiconductor surface is etched to remove the sacrificial oxide layer and to level the first subset to a first level and to create a topology such that the first subset has a first level differing from a second level of a surface portion of the marker structure different from the first subset.
摘要:
A substrate stage for an immersion type lithographic apparatus is arranged to project a patterned radiation beam from a patterning device onto a substrate, the substrate stage being constructed to hold the substrate and including at least a sensor for sensing the patterned radiation beam, the sensor including an at least partially transmissive layer having a front side facing the incoming radiation beam and a back side opposite the front side, wherein the back side is provided with at least a sensor mark to be subjected to the radiation beam transmitted through the layer.