摘要:
A multilayer semiconductor structure includes a conductive via. The conductive via includes a pellet of metal having a high resistance to electromigration. The pellet is made from a conformal layer of copper or gold deposited over the via to form a copper or gold reservoir or contact located in the via. A barrier layer is provided between the reservoir and an insulating layer to prevent the pellet from diffusing into the insulating layer. The pellet can be formed by selective deposition or by etching a conformal layer. The conformal layer can be deposited by sputtering, collimated sputtering, chemical vapor deposition (CVD), dipping, evaporating, or by other means. The barrier layer and pellet may be etched by anisotropic dry etching, plasma-assisted etching, or other layer removal techniques.
摘要:
A multilayer semiconductor structure includes a conductive via. The conductive via includes a reservoir of metal having a high resistance to electromigration. The reservoir is made from a conformal layer of copper, or gold deposited over the via to form a copper, or gold plug located in the via. A barrier layer is provided between the reservoir and an insulating layer to prevent the reservoir from diffusing into the insulating layer. The barrier layer and reservoir may be deposited by sputtering, collimated sputtering, chemical vapor deposition (CVD), dipping, evaporating, or by other means. The barrier layer and reservoir may be etched by anisotropic dry etching, plasma-assisted etching, or other layer removal techniques.
摘要:
A multilayer semiconductor structure includes a conductive via. The conductive via includes a pellet of metal having a high resistance to electromigration. The pellet is made from a conformal layer of copper or gold deposited over the via to form a copper or gold reservoir or contact located in the via. A barrier layer is provided between the reservoir and an insulating layer to prevent the pellet from diffusing into the insulating layer. The pellet can be formed by selective deposition or by etching a conformal layer. The conformal layer can be deposited by sputtering, collimated sputtering, chemical vapor deposition (CVD), dipping, evaporating, or by other means. The barrier layer and pellet may be etched by anisotropic dry etching, plasma-assisted etching, or other layer removal techniques.
摘要:
An interconnection level of conductive lines and connecting vias separated by insulation for integrated circuits and substrate carriers for semiconductor devices using dual damascene with only one mask pattern for the formation of both the conductive lines and vias. The mask pattern of conductive lines contains laterally enlarged areas where the via openings are to formed in the insulating material. After the conductive line openings with laterally enlarged areas are created, the openings are filled with a conformal material whose etch selectivity is substantially less than the etch selectivity of the insulating material to the enchant for etching the insulating material and whose etch selectivity is substantially greater than the insulating material to its enchant. The conformal material is anisotropically etched to form sidewalls in the enlarged area and remove the material between the sidewalls but leave material remaining in the parts of the conductive lines openings. The sidewalls serve as self aligned mask for etching via openings. The conformal material is either a conductive material which is left in place after the via openings are formed or an insulating material which is removed. In the former, the partially filled conductive line openings are filled with additional conductive material along with the via, which is either the same or different conductive material. In the latter, the conductive line openings and vias are filled with the same conductive material.
摘要:
A dual damascene method of fabricating an interconnection level of conductive lines and connecting vias separated by insulation for integrated circuits and substrate carriers for semiconductor devices using a thin protective via mask to form the via openings. A conductive line mask pattern is used to form conductive line openings in an insulating layer. Next, a thin protective layer of conformal material is deposited in the conducive line opening. The protective layer and the insulating layer each have etch resistance to others etchant. Using a via mask pattern, openings are etching the protective layer with the insulating layer serving as and etch stop. Next via openings are etched in the insulating material using the openings in the thin protective layer as the etch mask. If the protective layer is a conductive material, it is removed from the surface of the insulating layer either before or after the conductive line and via openings are filled with a conductive material. If the protective material is an insulating material, it is entirely removed before filling the conductive line and via openings conductive material.
摘要:
A method of fabricating an interconnection level of conductive lines and connecting vias separated by insulation for integrated circuits and substrate carriers for semiconductor devices using dual damascene with only one mask pattern for the formation of both the conductive lines and vias. The mask pattern of conductive lines contains laterally enlarged areas where the via openings are to formed in the insulating material. After the conductive line openings with laterally enlarged areas are created, the openings are filled with a conformal material whose etch selectivity is substantially less than the etch selectivity of the insulating material to the enchant for etching the insulating material and whose etch selectivity is substantially greater than the insulating material to its enchant. The conformal material is anisotropically etched to form sidewalls in the enlarged area and remove the material between the sidewalls but leave material remaining in the parts of the conductive lines openings. The sidewalls serve as self aligned mask for etching via openings. The conformal material is either a conductive material which is left in place after the via openings are formed or an insulating material which is removed. In the former, the partially filled conductive line openings are filled with additional conductive material along with the via, which is either the same or different conductive material. In the latter, the conductive line openings and vias are filled with the same conductive material.
摘要:
A dual damascene method of fabricating an interconnection level of conductive lines and connecting vias separated by insulation for integrated circuits and substrate carriers for semiconductor devices using a sacrificial via fill. A first layer of insulating material is formed with via openings. The openings are filled with a sacrificial removable material. A second layer of insulating material is deposed on the first layer. In one embodiment, the etch selectivity to the etchant of the second layer is essentially the same as the sacrificial via fill and, preferably, is substantially higher than second layer. Using a conductive line pattern aligned with the via openings, conductive line openings are etched in the second insulating layer and, during etching, the sacrificial fill is removed from the via openings. In a second embodiment, the sacrificial material is not etchable by the etchant for forming the conductive line openings and, after formation of the conductive line openings, the sacrificial material is removed with an etchant to which the first insulating layer is resistive or less selective. A conductive material now is deposited in the conductive line and via openings.
摘要:
A method of fabricating an interconnection level of conductive lines and connecting vias separated by insulation for integrated circuits and substrate carriers for semiconductor devices using a reverse damascene in the formation of the conductive lines and vias. A conductive line pattern is first used to etch completely through the layer to form conductive line openings. The openings are completely filled with a conductive material and planarized so that the surfaces of the conductive material and the insulating layer are coplanar. A via pattern is aligned perpendicular to the conductive lines and the conductive material is etched half way through the conductive lines in other than the areas covered by the via pattern. The openings thus created in the upper portion of the conductive lines are filled with insulating material to complete the dual damascene interconnection level with the conductive lines in the lower portion of the insulating layer and upwardly projecting vias in the upper portion of the layer. In addition, a triple damascene layer is formed by starting with an insulating layer about one-third thicker than normal and by combining the standard dual damascene method with the above described method. The resulting interconnection level structure comprises conductive lines having upwardly and downwardly projecting vias.
摘要:
A method of fabricating an interconnection level of conductive lines and connecting vias separated by insulation for integrated circuits and substrate carriers for semiconductor devices using a reverse damascene in the formation of the conductive lines and vias. A conductive line pattern is first used to etch completely through the layer to form conductive line openings. The openings are completely filled with a conductive material and planarized so that the surfaces of the conductive material and the insulating layer are coplanar. A via pattern is aligned perpendicular to the conductive lines and the conductive material is etched half way through the conductive lines in other than the areas covered by the via pattern. The openings thus created in the upper portion of the conductive lines are filled with insulating material to complete the dual damascene interconnection level with the conductive lines in the lower portion of the insulating layer and upwardly projecting vias in the upper portion of the layer. In addition, a triple damascene layer is formed by starting with an insulating layer about one-third thicker than normal and by combining the standard dual damascene method with the above described method. The resulting interconnection level structure comprises conductive lines having upwardly and downwardly projecting vias.
摘要:
A semiconductor chip having an exposed metal terminating pad thereover, and a separate substrate having a corresponding exposed metal bump thereover are provided. A conducting polymer plug is formed over the exposed metal terminating pad. A conforming interface layer is formed over the conducting polymer plug. The conducting polymer plug of the semiconductor chip is aligned with the corresponding metal bump. The conforming interface layer over the conducting polymer plug is mated with the corresponding metal bump. The conforming interface layer is thermally decomposed, adhering and permanently attaching the conducting polymer plug with the corresponding metal bump. Methods of forming and patterning a nickel carbonyl layer are also disclosed.