摘要:
A multilayer semiconductor structure includes a conductive via. The conductive via includes a pellet of metal having a high resistance to electromigration. The pellet is made from a conformal layer of copper or gold deposited over the via to form a copper or gold reservoir or contact located in the via. A barrier layer is provided between the reservoir and an insulating layer to prevent the pellet from diffusing into the insulating layer. The pellet can be formed by selective deposition or by etching a conformal layer. The conformal layer can be deposited by sputtering, collimated sputtering, chemical vapor deposition (CVD), dipping, evaporating, or by other means. The barrier layer and pellet may be etched by anisotropic dry etching, plasma-assisted etching, or other layer removal techniques.
摘要:
A method of forming low dielectric insulation between those pairs of conductive lines, of a level of interconnection for integrated circuits, having a gap of about 0.5 microns or less by depositing a nonconformal source with a poor step function for the insulating material, such as silane (SiH.sub.4) as the silicon (Si) source for silicon dioxide (SiO.sub.2), so as to create, in the gap, a large void whose dielectric constant is slightly greater than 1. After the formation of the void in the 0.5 microns or less gaps, the deposited nonconformal material is etched either simultaneously or sequentially along with deposition to fill the remaining gaps with void free insulation. The surface of the deposited insulating material is planarized at the desired thickness. Alternatively, a thin conformal insulating layer is first deposited as a liner on the conductive lines. The resulting structure of the interconnection level comprises a layer of insulation between and on the conductive lines with the dielectric constant of the insulation between the pairs of conductive lines with gap of 0.5 or less being, in combination with the void, at least about 3 or lower, and all of the remaining gaps are filled with void free insulating material with a dielectric constant of greater than about 3.5.
摘要:
A method of forming low dielectric insulation between those pairs of conductive lines, of a level of interconnection for integrated circuits, having a gap of about 0.5 microns or less by depositing a nonconformal source with a poor step function for the insulating material, such as silane (SiH.sub.4) as the silicon (Si) source for silicon dioxide (SiO.sub.2), so as to create, in the gap, a large void whose dielectric constant is slightly greater than 1. After all of the conductive lines have received a deposit of conformal insulating material and a flowable insulating material, the composite insulating materials are removed, preferably by etching, from those pairs of conductive lines with a gap of about 0.5 microns or less. Now, a nonconformal insulating material with a poor step function is deposited and creates a large void in the open gaps of 0.5 microns or less. After creating the void, the deposition continues and is planarized at the desired composite thickness of insulation. Alternatively, a thin conformal insulating layer is first deposited as a liner on the conductive lines. The resulting structure of the interconnection level comprises a layer of insulation between and on the conductive lines with the dielectric constant of the insulation between the pairs of conductive lines with the gap of 0.5 or less being, in combination with the void, at least about 3 or lower, and all of the remaining gaps are filled with the flowable insulating material and are void free with a composite dielectric constant of greater than about 3.5.
摘要:
A method of forming low dielectric insulation between those pairs of conductive lines, of a level of interconnection for integrated circuits, having a gap of about 0.5 microns or less by depositing a nonconformal source with a poor step function for the insulating material, such as silane (SiH.sub.4) as the silicon (Si) source for silicon dioxide (SiO.sub.2), so as to create, in the gap, a large void whose dielectric constant is slightly greater than 1. After the formation of the void in the 0.5 microns or less gaps, the deposited nonconformal material is etched either simultaneously or sequentially along with deposition to fill the remaining gaps with void free insulation. The surface of the deposited insulating material is planarized at the desired thickness. Alternatively, a thin conformal insulating layer is first deposited as a liner on the conductive lines. The resulting structure of the interconnection level comprises a layer of insulation between and on the conductive lines with the dielectric constant of the insulation between the pairs of conductive lines with gap of 0.5 or less being, in combination with the void, at least about 3 or lower, and all of the remaining gaps are filled with void free insulating material with a dielectric constant of greater than about 3.5.
摘要:
The electromigration and stress migration of Cu interconnects is significantly reduced by forming a composite capping layer comprising a layer of β-Ta on the upper surface of the inlaid Cu, a layer of tantalum nitride on the β-Ta layer and a layer of α-Ta on the tantalum nitride layer. Embodiments include forming a recess in an upper surface of Cu inlaid in a dielectric layer, depositing a layer of β-Ta at a thickness of 25 Å to 40 Å, depositing a layer of tantalum nitride at a thickness of 20 Å to 100 Å and then depositing a layer of α-Ta at a thickness of 200 Å to 500 Å. Embodiments further include forming an overlying dielectric layer, forming an opening therein, e.g., a via opening or a dual damascene opening, lining the opening with α-Ta, and filling the opening with Cu in electrical contact with the underlying inlaid Cu.
摘要:
Electromigration and stress migration of Cu interconnects are significantly reduced by forming a composite capping layer comprising a layer of tantalum nitride on the upper surface of the inlaid Cu and a layer of α-Ta on the titanium nitride layer. Embodiments include forming a recess in an upper surface of an upper surface of Cu inlaid in a dielectric layer, depositing a layer of titanium nitride of a thickness of 20 Å to 100 Å and then depositing a layer of α-Ta at a thickness of 200 Å to 500 Å.
摘要:
A Cu interconnect, e.g.; a dual damascene structure, is formed with improved electromigration resistance and increased via chain yield by depositing a barrier layer in an opening by CVD, depositing a flash layer of &agr;-Ta by PVD, at a thickness less than 30 Å, on the bottom of the barrier layer, depositing a seedlayer and then filling the opening with Cu. Embodiments include depositing a thin &agr;-Ta layer, as at a thickness less than 10 Å, and/or as discontinuous regions of clusters of atoms on sides of the opening.
摘要:
A deposition tool and a method for depositing a material within the recesses in a substrate of semiconductor wafer employs a rotatable diffuser that diffuses the plating material onto the top surface of a substrate. The diffuser is placed into contact with the semiconductor wafer and rotated while the plating material is applied through apertures in the diffuser. The plating material fills recesses patterned into the substrate of the semiconductor wafer but is prevented from forming to a significant degree on the top surface of the semiconductor wafer due to the contact and rotation of the diffuser. Since the plating material is not deposited on the top surface of the semiconductor wafer to any significant degree, chemical mechanical polishing (CMP) planarization is significantly reduced or completely eliminated.
摘要:
Abrasion of Cu metallization during CMP is reduced and residual slurry particulate removal facilitated by employing a CMP slurry containing a dispersion of soft mineral particles having high solubility in dilute acids. Embodiments include CMP Cu metallization with a slurry containing magnesium oxide particles and removing any residual magnesium oxide particles after CMP with an organic acid, such as citric acid or acetic acid, or a dilute inorganic acid, such as hydrochloric, phosphoric, boric or fluoboric acid.
摘要:
The present invention provides for a method for manufacturing a charge storage region in a semiconductor substrate for a memory cell in a dynamic RAM, comprising forming an insulating layer on the substrate, forming a masking layer over the insulating layer, forming at least one aperture in the masking layer, the aperture defining the charge storage region in the semiconductor substrate, implanting dopant ions of a first polarity through the aperture for diffusion through the substrate, and implanting dopant ions of a second polarity through the aperture for diffusion through the substrate to a lesser degree than the first polarity dopant diffusion so that the diffusion of the first polarity dopant with respect to the diffusion of the second polarity dopant forms a P-N junction substantially aligned with the edge of the masking layer aperture to define the periphery of the charge storage region. One way of diffusing the second polarity dopant to a lesser degree than the first polarity dopant in the substrate is to select a first polarity dopant which has a diffusivity greater than the second polarity dopant. Another way of achieving the desired diffusion of first polarity dopant with respect to the second polarity dopant is to select the two dopants with diffusivities approximately equal and to diffuse the first polarity dopant before the second polarity dopants is implanted into the semiconductor substrate.