摘要:
A separation column is provided with a photopolymer component which, when irradiated, causes controlled porosity polymerization. A particularly preferred embodiment is wherein the separation medium is retained by a photopolymer frit, which can be reliably and reproducibly generated with controlled porosity.
摘要:
A method that comprises providing a polymerized sol-gel material (PSG) and linking an enzyme to a surface of the PSG via covalent linkage is provided. The surface of the PSG is derivatized with a linker that comprises a functional group for linking itself to the surface of the PSG and a functional group for linking itself with the enzyme. The linked-enzyme PSG, or microreactor, is an effective means of at least partially digesting a substrate, such as a biological substrate. The activity of the enzyme of the microreactor may be significantly enhanced, up to 200-fold to over 2000-fold, for example, relative to the activity of the enzyme free of the microreactor. The microreactor is thus an effective vehicle for digesting a substrate such as a biomolecule, a protein, an oligonucleotide, a peptide, a steroid, and/or an organic acid, after which, any remaining substrate and one or more digestion product(s) may be separated and detected. Microreactors and integrated devices that incorporate microreactors, such as chips, columns, pipet tips, wells, and well-plates, are also provided.
摘要:
A separation column and a method of making the separation column are provided. The separation column includes a separation channel and a separation medium in the channel. The separation medium includes a porous matrix, and the porous matrix includes a support and a stationary phase. The support includes a metal organic polymer, such as a photopolymer, and the stationary phase includes a bonded phase. The separation medium can be used to separate a sample of analytes.
摘要:
A separation column and a method of preparing the separation column are provided. The separation column includes a separation channel and a porous matrix in the channel. The porous matrix includes a metal organic polymer, such as a photopolymer. The porous matrix can be a separation medium adapted to separate a sample of analytes or a frit adapted to retain a separation medium in the channel.
摘要:
A separation column and a method of making the separation column are provided. The separation column includes a separation channel and fritless separation medium in the channel. The separation medium includes a porous matrix, and the porous matrix includes a metal organic polymer, such as a photopolymer. The separation medium can be used to separate a sample of analytes.
摘要:
A mixture of chromatographic particles and a solution of water, alcohol and metal alkoxide may be injected by means of a syringe into a capillary column as a gel. The volatile components in the gel are evaporated by means of heating and gas pressure reduction to form a porous sol-gel glass matrix attached to the inner wall of the separation channel. The pores are large enough for the passage of protons, neutral and ionic species but are too small to permit significant leaching of the chromatographic particles. The separation column so formed requires no frits to maintain the glass matrix in place in the column. Electrical potential difference and/or pressure difference may be applied to cause fluid flow in the separation column to cause electrophoretic and chromatographic separation.
摘要:
Articles having porous or foam-like elements are provided. The design, fabrication and structures of the articles exploit properties of reactive composite materials (RCM) and their reaction products. In particular, fluids generated by reacting RCM are utilized to create or fill voids in the porous or foam-like elements.
摘要:
A more energy-efficient method of processing crude oil is achieved by viscoelastic shearing in order to increase the vapor pressure of the crude oil. This change in vapor pressure allows a more efficient separation of volatile components from non-volatile components in the crude oil. By optimizing the energy expenditure for shearing and the energy expenditure for separating the volatile components from the non-volatile components of the crude oil, while simultaneously removing the volatile components by distillation, one can reduce the overall energy input for the separation. Alternatively, it is possible to affect the distillation at a reduced temperature.