Detection of Pathogenic Microorganisms Using Fused Sensor Data
    3.
    发明申请
    Detection of Pathogenic Microorganisms Using Fused Sensor Data 有权
    使用熔融传感器数据检测病原微生物

    公开(公告)号:US20090163369A1

    公开(公告)日:2009-06-25

    申请号:US12339805

    申请日:2008-12-19

    IPC分类号: C40B30/02 G06F17/18 G01J3/44

    摘要: A system and method to search spectral databases to identify unknown materials, specifically pathogenic microorganisms. A library is provided, having sublibraries containing reference data sets of known materials and test data sets, both generated by at least one spectroscopic data generating instrument. For each test data set, each sublibrary associated with the instrument used is searched. A set of scores for each searched sublibrary is produced, representing the likelihood of a match between the reference data set and test data set. Relative probability values are calculated for each searched sublibrary. All relative probability values are fused producing a set of final probability values, used in determining whether the unknown material is represented through a known material in the library. The known material represented in the libraries having the highest final probability value is reported, if the highest final probability value is greater than or equal to the minimum confidence value.

    摘要翻译: 检索光谱数据库以识别未知物质,特别是致病微生物的系统和方法。 提供一个库,具有包含由至少一个光谱数据生成装置生成的已知材料和测试数据集的参考数据集的子图标。 对于每个测试数据集,搜索与使用的仪器相关联的每个子库。 产生每个搜索的子图库的一组分数,表示参考数据集和测试数据集之间的匹配的可能性。 对于每个搜索的子图库计算相对概率值。 所有相对概率值被融合,产生一组最终概率值,用于确定未知材料是否通过库中的已知材料表示。 如果最大最终概率值大于或等于最小置信度值,则报告具有最高最终概率值的库中表示的已知材料。

    FORENSIC INTEGRATED SEARCH TECHNOLOGY WITH INSTRUMENT WEIGHT FACTOR DETERMINATION
    6.
    发明申请
    FORENSIC INTEGRATED SEARCH TECHNOLOGY WITH INSTRUMENT WEIGHT FACTOR DETERMINATION 有权
    威信集成搜索技术与仪器重量因子确定

    公开(公告)号:US20080300826A1

    公开(公告)日:2008-12-04

    申请号:US12017445

    申请日:2008-01-22

    IPC分类号: G06F17/18

    摘要: A system and method to search spectral databases and to identify unknown materials from multiple spectroscopic data in the databases. The methodology may be substantially automated and is configurable to determine weights to be accorded to spectroscopic data from different spectroscopic data generating instruments for improved identification of unknown materials. Library spectra from known materials are divided into training and validation sets. Initial, instrument-specific weighting factors are determined using a weight grid or weight scale. The training and validation spectra are weighted with the weighting factors and indicator probabilities for various sets of “coarse” weighting factors are determined through an iterative process. The finally-selected set of coarse weighting factors is further “fine tuned” using a weight grid with finer values of weights. The instrument-specific finer weight values may be applied to test data sets (or spectra) of an unknown material as well as to the library spectra from corresponding spectroscopic instruments. Instrument-specific weights for each class of samples may also be computed for additional customization and accuracy.

    摘要翻译: 一种用于搜索光谱数据库并从数据库中的多个光谱数据中识别未知物质的系统和方法。 该方法可以基本上是自动化的,并且可配置为确定要与来自不同光谱数据生成装置的光谱数据一致的权重,以改进未知材料的识别。 已知材料的谱图谱分为训练和验证集。 使用权重网格或权重量表确定初始的仪器特定加权因子。 训练和验证光谱通过加权因子加权,并且通过迭代过程确定各组“粗”加权因子的指标概率。 最终选择的粗加权系数集合使用具有更精确的权重值的权重网格进一步“精细调整”。 仪器特定的更精细的重量值可以应用于未知材料的测试数据集(或光谱)以及来自相应光谱仪的文库光谱。 也可以计算每类样品的仪器特定重量,以获得额外的定制和准确性。