摘要:
A self-aligned magnetic clad bit line structure (274) for a magnetic memory element (240a) and its method of formation are disclosed, wherein the self-aligned magnetic clad bit line structure (274) extends within a trench (258) and includes a conductive material (250), magnetic cladding sidewalls (262) and a magnetic cladding cap (252). The magnetic cladding sidewalls (262) at least partially surround the conductive material (264) and the magnetic cladding cap (252) is substantially recessed within the trench with respect to the top of the trench.
摘要:
A self-aligned magnetic clad bit line structure (274) for a magnetic memory element (240a) and its method of formation are disclosed, wherein the self-aligned magnetic clad bit line structure (274) extends within a trench (258) and includes a conductive material (264), magnetic cladding sidewalls (262) and a magnetic cladding cap (252). The magnetic cladding sidewalls (262) at least partially surround the conductive material (264) and the magnetic cladding cap (252) is substantially recessed within the trench with respect to the top of the trench.
摘要:
A method for forming a capacitor includes providing a metal-containing bottom electrode, forming a capacitor insulator over the metal-containing bottom electrode, forming a metal-containing top electrode over the capacitor insulator, and forming a dielectric-containing field modification layer over the capacitor insulator and at least partially surrounding the metal-containing top electrode. Forming the dielectric-containing field modification layer may include oxidizing a sidewall of the metal-containing field modification layer. A barrier layer may be formed over the capacitor insulator prior to forming the metal-containing top electrode.
摘要:
A method for forming a capacitor includes providing a metal-containing bottom electrode, forming a capacitor insulator over the metal-containing bottom electrode, forming a metal-containing top electrode over the capacitor insulator, and forming a dielectric-containing field modification layer over the capacitor insulator and at least partially surrounding the metal-containing top electrode. Forming the dielectric-containing field modification layer may include oxidizing a sidewall of the metal-containing field modification layer. A barrier layer may be formed over the capacitor insulator prior to forming the metal-containing top electrode.
摘要:
A method and apparatus are described for fabricating metal gate electrodes (85, 86) over a high-k gate dielectric layer (32) having a rare earth oxide capping layer (44) in at least the NMOS device area by treating the surface of a rare earth oxide capping layer (44) with an oxygen-free plasma process (42) to improve photoresist adhesion, forming a patterned photoresist layer (52) directly on the rare earth oxide capping layer (44), and then applying a wet etch process (62) to remove the exposed portion of the rare earth oxide capping layer (44) from the PMOS device area.
摘要:
A semiconductor device has a P channel gate stack comprising a first metal type and a second metal type over the first metal type and an N channel gate stack comprising the second metal type in direct contact with the a gate dielectric. The N channel gate stack and a portion of the P channel gate stack are etched by a dry etch. The etch of P channel gate stack is completed with a wet etch. The wet etch is very selective to the gate dielectric and to the second metal type so that the N channel transistor is not adversely effected by completing the etch of the P channel gate stack.
摘要:
A method for forming a capacitor includes providing a metal-containing bottom electrode, forming a capacitor insulator over the metal-containing bottom electrode, forming a metal-containing top electrode over the capacitor insulator, and forming a dielectric-containing field modification layer over the capacitor insulator and at least partially surrounding the metal-containing top electrode. Forming the dielectric-containing field modification layer may include oxidizing a sidewall of the metal-containing field modification layer. A barrier layer may be formed over the capacitor insulator prior to forming the metal-containing top electrode.
摘要:
A method and apparatus are described for fabricating metal gate electrodes (85, 86) over a high-k gate dielectric layer (32) having a rare earth oxide capping layer (44) in at least the NMOS device area by treating the surface of a rare earth oxide capping layer (44) with an oxygen-free plasma process (42) to improve photoresist adhesion, forming a patterned photoresist layer (52) directly on the rare earth oxide capping layer (44), and then applying a wet etch process (62) to remove the exposed portion of the rare earth oxide capping layer (44) from the PMOS device area.
摘要:
A method and apparatus are described for fabricating single metal gate electrodes (35, 36) over a high-k gate dielectric layer (31, 32) that is separately doped in the PMOS and NMOS device areas (96, 97) by forming first capping oxide layer (23) with a first dopant species on a high-k gate dielectric layer (22) in at least the NMOS device area and also forming second capping oxide layer (27) with a second dopant species on a high-k gate dielectric layer (22) in at least the PMOS device area, where the first and second dopant species are diffused into the gate dielectric layer (22) to form a first fixed charge layer (31) in the PMOS device area of the high-k gate dielectric area and a second fixed charge layer (32) in the NMOS device area of the high-k gate dielectric area.
摘要:
A method and apparatus are described for fabricating single metal gate electrodes (35, 36) over a high-k gate dielectric layer (31, 32) that is separately doped in the PMOS and NMOS device areas (96, 97) by forming first capping oxide layer (23) with a first dopant species on a high-k gate dielectric layer (22) in at least the NMOS device area and also forming second capping oxide layer (27) with a second dopant species on a high-k gate dielectric layer (22) in at least the PMOS device area, where the first and second dopant species are diffused into the gate dielectric layer (22) to form a first fixed charge layer (31) in the PMOS device area of the high-k gate dielectric area and a second fixed charge layer (32) in the NMOS device area of the high-k gate dielectric area.