摘要:
An integrated circuit with devices having dielectric layers with different thicknesses. The dielectric layers include a high-k dielectric and some of the dielectric layers include an oxide layer that is formed from an oxidation process. Each device includes a layer including germanium or carbon located underneath the electrode stack of the device. A silicon cap layers is located over the layer including germanium or carbon.
摘要:
An integrated circuit with devices having dielectric layers with different thicknesses. The dielectric layers include a high-k dielectric and some of the dielectric layers include an oxide layer that is formed from an oxidation process. Each device includes a layer including germanium or carbon located underneath the electrode stack of the device. A silicon cap layers is located over the layer including germanium or carbon.
摘要:
A semiconductor device has a gate with three conductive layers over a high K gate dielectric. The first layer is substantially oxygen free. The work function is modulated to the desired work function by a second conductive layer in response to subsequent thermal processing. The second layer is a conductive oxygen-bearing metal. With sufficient thickness of the first layer, there is minimal penetration of oxygen from the second layer through the first layer to adversely impact the gate dielectric but sufficient penetration of oxygen to change the work function to a more desirable level. A third layer, which is metallic, is deposited over the second layer. A polysilicon layer is deposited over the third layer. The third layer prevents the polysilicon layer and the oxygen-bearing layer from reacting together.
摘要:
A first gate (120) and a second gate (122) are preferably PMOS and NMOS transistors, respectively, formed in an n-type well (104) and a p-type well (106). In a preferred embodiment first gate (120) includes a first metal layer (110) of titanium nitride on a gate dielectric (108), a second metal layer (114) of tantalum silicon nitride and a silicon containing layer (116) of polysilicon. Second gate (122) includes second metal layer (114) of a tantalum silicon nitride layer on the gate dielectric (108) and a silicon containing layer (116) of polysilicon. First spacers (124) are formed adjacent the sidewalls of the gates to protect the metals from chemistries used to remove photoresist masks during implant steps. Since the chemistries used are selective to polysilicon, the spacers (124) need not protect the polysilicon capping layers, thereby increasing the process margin of the spacer etch process. The polysilicon cap also facilitates silicidation of the gates.
摘要:
A transistor structure includes a retrograde gate structure (112) that is narrower at the end that interfaces with the gate dielectric (120) than it is at the opposite end and method for manufacture of such a structure. The retrograde gate structure (112) is formed by depositing a layer of gate material (104) that has varying composition in the vertical direction. The differentiation in composition causes varying lateral etch rate characteristics along the vertical direction of the gate structure (112) such that increased etching of the gate material (104) occurs near the interface with the gate dielectric layer (102).
摘要:
A method of processing semiconductor materials, including providing a monocrystalline silicon substrate having a (001) crystallographic surface orientation; off-cutting the substrate to an orientation from about 2.degree. to about 6.degree. offset towards the [110] direction; and epitaxially growing a relaxed graded layer of a crystalline GeSi on the substrate. A semiconductor structure including a monocrystalline silicon substrate having a (001) crystallographic surface orientation, the substrate being off-cut to an orientation from about 2.degree. to about 6.degree. offset towards the [110] direction; and a relaxed graded layer of a crystalline GeSi which is epitaxially grown on the substrate.
摘要:
An integrated circuit with devices having dielectric layers with different thicknesses. The dielectric layers include a high-k dielectric and some of the dielectric layers include an oxide layer that is formed from an oxidation process. Each device includes a layer including germanium or carbon located underneath the electrode stack of the device. A silicon cap layers is located over the layer including germanium or carbon.
摘要:
A method of fabricating a MOS transistor that comprises a dual-metal gate that is formed from heterotypical metals. A gate dielectric (34), such as HfO2, is deposited on a semiconductor substrate. A sacrificial layer (35), is next deposited over the gate dielectric. The sacrificial layer is patterned so that the gate dielectric over a first (pMOS, for example) area (32) of the substrate is exposed and gate dielectric over a second (nMOS, for example) area (33) of the substrate continues to be protected by the sacrificial layer. A first gate conductor material (51) is deposited over the remaining sacrificial area and over the exposed gate dielectric. The first gate conductor material is patterned so that first gate conductor material over the second area of the substrate is etched away. The sacrificial layer over the second area prevents damage to the underlying dielectric material as the first gate conductor material is removed.
摘要:
An electronic device includes an n-channel transistor and a p-channel transistor. The p-channel transistor has a first gate electrode with a first work function and a first channel region including a semiconductor layer immediately adjacent to a semiconductor substrate. In one embodiment, the first work function is less than the valence band of the semiconductor layer. In another embodiment, the n-channel transistor has a second gate electrode with a second work function different from the first work function and closer to a conduction band than a valence band of a second channel region. A process of forming the electronic device includes forming first and second gate electrodes having first and second work functions, respectively. First and second channel regions having a same minority carrier type are associated with the first and second gate electrodes, respectively.
摘要:
An integrated circuit with devices having dielectric layers with different thicknesses. The dielectric layers include a high-k dielectric and some of the dielectric layers include an oxide layer that is formed from an oxidation process. Each device includes a layer including germanium or carbon located underneath the electrode stack of the device. A silicon cap layers is located over the layer including germanium or carbon.