摘要:
In an electrochemical reactor used for electrochemical treatment of a substrate, for example, for electroplating or electropolishing the substrate, one or more of the surface area of a field-shaping shield, the shield's distance between the anode and cathode, and the shield's angular orientation is varied during electrochemical treatment to screen the applied field and to compensate for potential drop along the radius of a wafer. The shield establishes an inverse potential drop in the electrolytic fluid to overcome the resistance of a thin film of conductive metal on the wafer.
摘要:
An electrochemical reactor is used to electrofill damascene architecture for integrated circuits or for electropolishing magnetic disks. An inflatable bladder is used to screen the applied field during electroplating operations to compensate for potential drop along the radius of a wafer. The bladder establishes an inverse potential drop in the electrolytic fluid to overcome the resistance of a thin film seed layer of copper on the wafer.
摘要:
In an electropolishing or electrolytic etching apparatus the anode is separated from the cathode to prevent bubble transport to the anode and to produce a uniform current distribution at the anode by means of a solid nonconducting anode-cathode barrier. The anode extends into the top of the barrier and the cathode is outside the barrier. A virtual cathode hole formed in the bottom of the barrier below the level of the cathode permits current flow while preventing bubble transport. The anode is rotatable and oriented horizontally facing down. An extended anode is formed by mounting the workpiece in a holder which extends the electropolishing or etching area beyond the edge of the workpiece to reduce edge effects at the workpiece. A reference electrode controls cell voltage. Endpoint detection and current shut-off stop polishing. Spatially uniform polishing or etching can be rapidly performed.
摘要:
A disclosed electroplanarization process involves “masking” certain regions of a wafer surface during electropolishing. The regions chosen for masking are features of relatively low aspect ratio (i.e., features that are wider than they are deep). The masking is accomplished with a material of relatively low ionic conductivity, which effectively slows or blocks transport of the metal ions produced during electropolishing. Examples of masking materials include concentrated phosphoric acid and certain polymers.
摘要:
The present invention pertains to apparatus and methods for planarization of metal surfaces having both recessed and raised features, over a large range of feature sizes. The invention accomplishes this by increasing the fluid agitation in raised regions with respect to recessed regions. That is, the agitation of the electropolishing bath fluid is agitated or exchanged as a function of elevation on the metal film profile. The higher the elevation, the greater the movement or exchange rate of bath fluid. In preferred methods of the invention, this agitation is achieved through the use of a microporous electropolishing pad that moves over (either near or in contact with) the surface of the wafer during the electropolishing process. Thus, methods of the invention are electropolishing methods, which in some cases include mechanical polishing elements.
摘要:
A process of removing both the field metal, such as copper, and a metal, such as copper, embedded into a dielectric or substrate at substantially the same rate by dripping or spraying a suitable metal etchant onto a spinning wafer to etch the metal evenly on the entire surface of the wafer. By this process the field metal is etched away completely while etching of the metal inside patterned features in the dielectric at the same or a lesser rate. This process is dependent on the type of chemical etchant used, the concentration and the temperature of the solution, and also the rate of spin speed of the wafer during the etching. The process substantially reduces the metal removal time compared to mechanical polishing, for example, and can be carried out using significantly less expensive equipment.
摘要:
In electroplating a metal layer on a semiconductor wafer, the resistive voltage drop between the edge of the wafer, where the electrical terminal is located, and center of the wafer causes the plating rate to be greater at the edge than at the center. As a result of this so-called "terminal effect", the plated layer tends to be concave. This problem is overcome by first setting the current at a relatively low level until the plated layer is sufficiently thick that the resistive drop is negligible, and then increasing the current to improve the plating rate. Alternatively, the portion of the layer produced at the higher current can be made slightly convex to compensate for the concave shape of the portion of the layer produced at the lower current. This is done by reducing the mass transfer of the electroplating solution near the edge of the wafer to the point that the electroplating process is mass transfer limited in that region. As a result, the portion of the layer formed under these conditions is thinner near the edge of the wafer.
摘要:
A method for forming nuclear tracks having a width on the order of 100-200 nm in nuclear trackable materials, such as polycarbonate (LEXAN) without causing delamination of the LEXAN. The method utilizes an adhesion film having a inert oxide which allows the track to be sufficiently widened to >200 nm without delamination of the nuclear trackable materials. The adhesion film may be composed of a metal such as Cr, Ni, Au, Pt, or Ti, or composed of a dielectric having a stable surface, such as silicon dioxide (SiO2), silicon nitride (SiNx), and aluminum oxide (AlO). The adhesion film can either be deposited on top of the gate metal layer, or if the properties of the adhesion film are adequate, it can be used as the gate layer. Deposition of the adhesion film is achieved by standard techniques, such as sputtering or evaporation.
摘要:
In electroplating a metal layer on a semiconductor wafer, the resistive voltage drop between the edge of the wafer, where the electrical terminal is located, and center of the wafer causes the plating rate to be greater at the edge than at the center. As a result of this so-called "terminal effect", the plated layer tends to be concave. This problem is overcome by first setting the current at a relatively low level until the plated layer is sufficiently thick that the resistive drop is negligible, and then increasing the current to improve the plating rate. Alternatively, the portion of the layer produced at the higher current can be made slightly convex to compensate for the concave shape of the portion of the layer produced at the lower current. This is done by reducing the mass transfer of the electroplating solution near the edge of the wafer to the point that the electroplating process is mass transfer limited in that region. As a result, the portion of the layer formed under these conditions is thinner near the edge of the wafer.
摘要:
A process involving vapor etching of nuclear tracks in dielectric materials for creating high aspect ratio (i.e., length much greater than diameter), isolated cylindrical holes in dielectric materials that have been exposed to high-energy atomic particles. The process includes cleaning the surface of the tracked material and exposing the cleaned surface to a vapor of a suitable etchant. Independent control of the temperatures of the vapor and the tracked materials provide the means to vary separately the etch rates for the latent track region and the non-tracked material. As a rule, the tracked regions etch at a greater rate than the non-tracked regions. In addition, the vapor-etched holes can be enlarged and smoothed by subsequent dipping in a liquid etchant. The 20-1000 nm diameter holes resulting from the vapor etching process can be useful as molds for electroplating nanometer-sized filaments, etching gate cavities for deposition of nano-cones, developing high-aspect ratio holes in trackable resists, and as filters for a variety of molecular-sized particles in virtually any liquid or gas by selecting the dielectric material that is compatible with the liquid or gas of interest.