摘要:
Apparatuses and methods that provide for implementing a body area network are disclosed. An example of a method described herein includes determining a plurality of paths from a source node to a destination node in a set of nodes; determining, for each path in the plurality of paths, a Path Figure of Merit (PFM); associating two or more paths in the plurality of paths with a connection based on a total PFM threshold for the connection; and communicating from the source node to the destination node using at least two of the paths associated with the connection. Apparatuses for implementing the methods are also disclosed herein.
摘要:
Apparatuses and methods that provide for implementing a body area network are disclosed. An example of a method described herein includes determining a plurality of paths from a source node to a destination node in a set of nodes; determining, for each path in the plurality of paths, a Path Figure of Merit (PFM); associating two or more paths in the plurality of paths with a connection based on a total PFM threshold for the connection; and communicating from the source node to the destination node using at least two of the paths associated with the connection. Apparatuses for implementing the methods are also disclosed herein.
摘要:
An apparatus, which may be configured as a receiver or transceiver, includes a plurality of super regenerative (SR) amplifiers coupled in parallel, wherein the SR amplifiers are tuned to distinct frequency bands, respectively. The apparatus may further include isolation amplifiers at the respective inputs and outputs of the SR amplifiers to prevent injection locking and reduce power leakage. The apparatus may include a circuit to reduce or substantially eliminate in-band jamming signals. The apparatus may form at least part of a wireless communications device adapted to receive signals from other wireless communications devices, adapted to transmit signal to other wireless communications devices, and adapted to both transmit and receive signals to and from other wireless communications devices.
摘要:
An apparatus for wireless communications is disclosed including a super regenerative receiver adapted to receive an incoming signal from a remote apparatus, and a circuit adapted to at least partially determine the distance to the remote apparatus based on the incoming signal. The super regenerative receiver may be configured for relatively high sensitivity to allow the distance measurement circuit to discern the line-of-sight (LOS) portion of the incoming signal from the non-LOS portion thereof. Using the time of the LOS portion of the incoming signal, the circuit is able to more accurately determine the distance to the remote apparatus. By sending a signal to the remote apparatus, and receiving a response signal from the remote apparatus, the circuit may determine the distance to the remote apparatus from the respective times of the transmission and reception of the signals.
摘要:
Various operations may be performed based on a distance-related function associated with two or more devices. For example, an association procedure for two or more devices may be based on one or more determined distances. Similarly, presence management may be based on one or more determined distances. A distance-related function may take various form including, for example, a distance between devices, two or more distances between devices, a rate of change in a relative distance between devices, relative acceleration between devices, or some combination of two or more of the these distance-related functions.
摘要:
Various operations may be performed based on a distance-related function associated with two or more devices. For example, an association procedure for two or more devices may be based on one or more determined distances. Similarly, presence management may be based on one or more determined distances. A distance-related function may take various form including, for example, a distance between devices, two or more distances between devices, a rate of change in a relative distance between devices, relative acceleration between devices, or some combination of two or more of the these distance-related functions.
摘要:
An apparatus for wireless communications is disclosed including a super regenerative receiver adapted to receive an incoming signal from a remote apparatus, and a circuit adapted to at least partially determine the distance to the remote apparatus based on the incoming signal. The super regenerative receiver may be configured for relatively high sensitivity to allow the distance measurement circuit to discern the line-of-sight (LOS) portion of the incoming signal from the non-LOS portion thereof. Using the time of the LOS portion of the incoming signal, the circuit is able to more accurately determine the distance to the remote apparatus. By sending a signal to the remote apparatus, and receiving a response signal from the remote apparatus, the circuit may determine the distance to the remote apparatus from the respective times of the transmission and reception of the signals.
摘要:
An apparatus, which may be configured as a receiver or transceiver, includes a plurality of super regenerative (SR) amplifiers coupled in parallel, wherein the SR amplifiers are tuned to distinct frequency bands, respectively. The apparatus may further include isolation amplifiers at the respective inputs and outputs of the SR amplifiers to prevent injection locking and reduce power leakage. The apparatus may include a circuit to reduce or substantially eliminate in-band jamming signals. The apparatus may form at least part of a wireless communications device adapted to receive signals from other wireless communications devices, adapted to transmit signal to other wireless communications devices, and adapted to both transmit and receive signals to and from other wireless communications devices.
摘要:
A system for compensating for reference frequency drift in a communications system. The inventive system includes a frequency source for providing a reference frequency. An error determination circuit determines if the reference frequency is within a predetermined range of a desired reference frequency and provides an error signal in response thereto. A frequency correction circuit steps the reference frequency up and/or down by a predetermined amount in response to the error signal until the reference frequency is within the predetermined range of the desired reference frequency. In a specific embodiment, the predetermined amount is twice the short-term capture range of the reference frequency which corresponds to approximately four parts per million. The predetermined range is the short-term capture range or two parts per million. The predetermined range is dependent upon the reference frequency band in which the receiver can successfully receive and decode the receive signal. The frequency source includes a voltage-controlled temperature-compensated crystal oscillator (VC-TCXO). The error determination circuit is a processor connected to the receiver. The processor includes a short-term frequency drift detector/compensator that generates a first control voltage input to the VC-TCXO for correcting the reference frequency in response to the error signal. The processor further includes a digital signal processing circuit for processing signals received from the receiver and determining the error signal in response thereto. The frequency correction circuit includes a long-term frequency drift detector/compensator that generates a second control voltage that is input to the VC-TCXO for correcting the reference frequency in response to the signal. In a more specific embodiment, the long-term frequency drift detector receives a correction signal from the short-term frequency drift detector indicating if the short-term frequency drift detector was successful in adjusting the reference frequency to the desired reference frequency.