摘要:
A transformer tap-changing circuit comprises an apparatus that includes a transformer comprising a secondary winding configured to inductively couple to a primary winding when a current is passed through the primary winding from an energy source, a first rectifier coupled to the secondary winding and configured to rectify a first AC voltage from the secondary winding into a first DC voltage, and a second rectifier coupled to the secondary winding and configured to rectify a second AC voltage from the secondary winding into a second DC voltage. The apparatus also includes a DC bus coupled to the first and second rectifiers and configured to receive the first and second DC voltages therefrom, wherein the first AC voltage is higher than the second AC voltage, and wherein the first DC voltage is higher than the second DC voltage.
摘要:
A transformer tap-changing circuit comprises an apparatus that includes a transformer comprising a secondary winding configured to inductively couple to a primary winding when a current is passed through the primary winding from an energy source, a first rectifier coupled to the secondary winding and configured to rectify a first AC voltage from the secondary winding into a first DC voltage, and a second rectifier coupled to the secondary winding and configured to rectify a second AC voltage from the secondary winding into a second DC voltage. The apparatus also includes a DC bus coupled to the first and second rectifiers and configured to receive the first and second DC voltages therefrom, wherein the first AC voltage is higher than the second AC voltage, and wherein the first DC voltage is higher than the second DC voltage.
摘要:
According to an aspect of the invention, a motor drive circuit includes a first energy storage device configured to supply electrical energy, a bi-directional DC-to-DC voltage converter coupled to the first energy storage device, a voltage inverter coupled to the bi-directional DC-to-DC voltage converter, and an input device configured to receive electrical energy from an external energy source. The motor drive circuit further includes a coupling system coupled to the input device, to the first energy storage device, and to the bi-directional DC-to-DC voltage converter. The coupling system has a first configuration configured to transfer electrical energy to the first energy storage device via the bi-directional DC-to-DC voltage converter, and has a second configuration configured to transfer electrical energy from the first energy storage device to the voltage inverter via the bi-directional DC-to-DC voltage converter.
摘要:
An apparatus for transferring energy using onboard power electronics comprises a first energy storage device configured to output a DC voltage and a DC bus coupled to the first energy storage device, the DC bus coupleable to a high-impedance voltage source. The apparatus also comprises a braking resistor coupled to the DC bus and to a control circuit, and a controller. The controller is configured to control the control circuit to cause on the DC bus to be dissipated through the braking resistor during a regenerative braking event, cause the first energy storage device to receive a charging energy from the high-impedance voltage source through the braking resistor during a charging event, and after a threshold value has been crossed, cause the first energy storage device to receive the charging energy from the high-impedance voltage source bypassing the braking resistor during the charging event.
摘要:
An apparatus comprises a first energy storage device configured to output a DC voltage, a first bi-directional voltage modification assembly coupled to the first energy storage device, and a charge bus coupled to the first energy storage device and to the first bi-directional voltage modification assembly. The apparatus also comprises high-impedance voltage source coupleable to the charge bus and a controller configured to monitor a transfer of charging energy supplied from the high-impedance voltage source to the first energy storage device. The controller is also configured to compare the monitored transfer of charging energy with a threshold value and, after the threshold value has been crossed, control the first bi-directional voltage modification assembly to modify one of a voltage and a current of the charging energy supplied to the first energy storage device.
摘要:
A system and method for electrical charging is disclosed. The electrical charging system comprises a first charging coil and an energy storage device coupled to the first charging coil. The energy charging system further comprises an energy charging station comprising a second charging coil disposed on a movable positioner, wherein the second charging coil is coupleable to an electrical energy source, at least one drive mechanism configured to translate the movable positioned, and a system controller. The system controller is configured to detect an event indicative of a proximity of the first charging coil to the energy charging station, translate the movable positioner such that the second charging coil is substantially aligned with, and closely spaced apart from, the first charging coil to form an electrical transformer, and initiate a charging cycle configured to transfer electrical energy to the at least one energy storage device via the electrical transformer.
摘要:
An apparatus comprises a first energy storage device configured to output a DC voltage, a first bi-directional voltage modification assembly coupled to the first energy storage device, and a charge bus coupled to the first energy storage device and to the first bi-directional voltage modification assembly. The apparatus also comprises high-impedance voltage source coupleable to the charge bus and a controller configured to monitor a transfer of charging energy supplied from the high-impedance voltage source to the first energy storage device. The controller is also configured to compare the monitored transfer of charging energy with a threshold value and, after the threshold value has been crossed, control the first bi-directional voltage modification assembly to modify one of a voltage and a current of the charging energy supplied to the first energy storage device.
摘要:
According to an aspect of the invention, a motor drive circuit includes a first energy storage device configured to supply electrical energy, a bi-directional DC-to-DC voltage converter coupled to the first energy storage device, a voltage inverter coupled to the bi-directional DC-to-DC voltage converter, and an input device configured to receive electrical energy from an external energy source. The motor drive circuit further includes a coupling system coupled to the input device, to the first energy storage device, and to the bi-directional DC-to-DC voltage converter. The coupling system has a first configuration configured to transfer electrical energy to the first energy storage device via the bi-directional DC-to-DC voltage converter, and has a second configuration configured to transfer electrical energy from the first energy storage device to the voltage inverter via the bi-directional DC-to-DC voltage converter.
摘要:
An apparatus for transferring energy using onboard power electronics comprises a first energy storage device configured to output a DC voltage and a DC bus coupled to the first energy storage device, the DC bus coupleable to a high-impedance voltage source. The apparatus also comprises a braking resistor coupled to the DC bus and to a control circuit, and a controller. The controller is configured to control the control circuit to cause energy on the DC bus to be dissipated through the braking resistor during a regenerative braking event, cause the first energy storage device to receive a charging energy from the high-impedance voltage source through the braking resistor during a charging event, and after a threshold value has been crossed, cause the first energy storage device to receive the charging energy from the high-impedance voltage source bypassing the braking resistor during the charging event.
摘要:
An apparatus includes an energy storage device, a bi-directional DC-to-DC voltage converter coupled to the energy storage device, and an input device. A voltage bus is coupled to the bi-directional DC-to-DC voltage converter and to the input device. The apparatus also includes a controller configured to control the bi-directional DC-to-DC voltage converter to convert a charging energy on the voltage bus into a charging energy suitable for charging the energy storage device during a charging operation and to monitor a voltage of the energy storage device during the charging operation. The controller is also configured to compare the monitored voltage with a threshold value during the charging operation and, after the threshold value has been crossed, control the bi-directional DC-to-DC voltage converter to convert the charging energy into a charging energy configured to maintain the voltage of the energy storage device at a pre-determined value.