摘要:
An explosive device and methods for forming same, the device comprising a portion of nitrous oxide and a portion of fuel. In one example, the explosive device may include a first storage area containing said portion of nitrous oxide, and a second storage area containing said portion of fuel, wherein the first storage area selectively maintains the portion of nitrous oxide separated from the fuel in the second storage area prior to detonation of the explosive device. In another example, in the event the explosive fails to detonate, the explosive device may include a vent valve for discharging the nitrous oxide from the explosive device to reduce or eliminate its explosive characteristics. The explosive device can be used for various applications, including but not limited to military weapons, pyrotechnic devices, or civil blasting explosives, for example.
摘要:
A reformation power plant generates clean electricity from carbonaceous material and high pressure CO2 which can be easily sequestered or utilized for a beneficial purpose, such as fuel production. The reformation power plant design utilizes a reformation process that reforms carbonaceous fuel with super-heated steam into a high-pressure gaseous mixture that is rich in carbon dioxide and hydrogen gas. This high-pressure gas exchanges excess heat with the incoming steam from a boiler and continues onward to a condenser. Once cooled, the high-pressure gas goes through a methanol separator, after which the CO2-rich gas is sequestered underground or beneficially re-used. The remaining hydrogen-rich gas is combusted through a gas turbine. The gas turbine provides power to a generator and also regenerative heat for the boiler. Finally, the generator converts mechanical energy into electricity, which is transferred to the electric grid. Therefore, carbon-free electricity is generated from coal, biomass, or other carbon-based feedstock.
摘要:
The present invention is a natural gas steam reforming method for generating an output gas mixture of carbon dioxide and hydrogen, including the following steps. (1) Combusting a portion of the natural gas with an oxidizing agent to generate heat, superheated steam, and a gas mixture of carbon dioxide, carbon monoxide, and hydrogen. (2) Steam reforming the gas mixture with additional superheated steam under steam-rich conditions to transform a remaining portion of the natural gas into carbon dioxide, carbon monoxide, and hydrogen. (3) Water-gas-shifting any residual carbon monoxide into additional carbon dioxide and additional hydrogen by utilizing a water-gas-shift catalyst downstream of the steam reforming step, thereby producing an effluent gas mixture that is predominantly carbon dioxide and hydrogen. (4) Boiling water in a top-to-bottom linear countercurrent heat exchanger to generate the superheated steam by transferring heat released in the water-gas-shifting step, where as the water is gravitationally and thermally stratified from top to bottom with a top portion boiling into steam, the steam continues to rise and is additionally heated in the top-to-bottom linear countercurrent heat exchanger. (5) And, utilizing the superheated steam produced as a reactant in the steam reforming step and the water-gas-shifting step to assist in reformation of the natural gas into carbon dioxide and hydrogen.
摘要:
Methods and apparatus for removing oil or natural gas from the ground. In one example, the method may include reforming a fuel source by reaction with water to generate driver gas, and injecting the driver gas into the oil well. The reforming operation may include causing the combustion of a combustible material with ambient oxygen for the release of energy; and heating a reforming reaction fuel and water sources, with the energy released from the combustion of the combustible material, to a temperature above that required for the reforming reaction wherein the fuel and water sources are reformed into driver gas. In one example, the amount of the combustible material combusted is sufficient to result in the release of enough energy to heat an amount of the reforming reaction fuel and water sources to the temperature above that required for the reforming reaction to proceed. The driver gas may be used to help extract oil from the ground and especially oil from depleted oil wells. It may also be used to drive natural gas trapped underground or in coal beds to the surface.
摘要:
An explosive device and methods for forming same, the device comprising a portion of nitrous oxide and a portion of fuel. In one example, the explosive device may include a first storage area containing said portion of nitrous oxide, and a second storage area containing said portion of fuel, wherein the first storage area selectively maintains the portion of nitrous oxide separated from the fuel in the second storage area prior to detonation of the explosive device. In another example, in the event the explosive fails to detonate, the explosive device may include a vent valve for discharging the nitrous oxide from the explosive device to reduce or eliminate its explosive characteristics. The explosive device can be used for various applications, including but not limited to military weapons, pyrotechnic devices, or civil blasting explosives, for example.
摘要:
A control system and control method for controlling a modular apparatus for extracting petroleum and/or generating electricity based on subsurface data as well as market prices of electricity and/or petroleum. One or more probes measure subsurface total pressure, partial pressure of carbon dioxide, partial pressure of hydrogen, oil flow rate, gas flow rate, underground temperature, and/or viscosity of the oil. The control system/method controls the apparatus based on the subsurface parameters by controlling an injection module and/or a gas separator module to increase or decrease output of driver gas. The control system/method may also control the injection module and/or the gas separator module to increase (or decrease) output of driver gas when the market price of electricity decreases (or increases) and/or petroleum increases (or decreases).
摘要:
An embodiment is a portable, modular apparatus, having one or more modules, for recovering oil from an oil well and generating electric power, and including a chassis to support a fuel reformer, a gas separator, a power generator, and/or a compressor. The fuel reformer module is adapted to react a fuel source with water to generate driver gas including a mixture of carbon dioxide gas and hydrogen gas. The gas separator module is operatively coupled to the reformer module and is adapted to separate at least a portion of the hydrogen gas from the rest of the driver gas. The power generator module is operatively coupled to the gas separator module and is adapted to generate electric power using a portion of the separated hydrogen gas. The compressor module is operatively coupled to the reformer module and is adapted to compress a portion of the driver gas, and to eject the driver gas at high pressure into the oil well for enhanced oil recovery. The chassis may be mounted and carried by a truck, boat, airplane, or other vehicle to the location of the oil well.
摘要:
Disclosed herein is a method for generating “clean” electricity from carbonaceous material, and producing high-pressure CO2 which can be easily sequestered or utilized for a beneficial purpose, such as fuel production. This method utilizes a reformation process that reforms carbonaceous fuel with superheated steam into a high-pressure gaseous mixture that is rich in carbon dioxide and hydrogen gas. This high-pressure gas exchanges excess heat with the incoming steam from a boiler. Once cooled, the high-pressure gas goes through a CO2 separator, after which the CO2-rich gas is sequestered underground or beneficially re-used. The remaining hydrogen-rich gas is used to generate power in a power generation subsystem, such as a gas turbine or a fuel cell. Therefore, carbon-free power is produced from coal, biomass, natural gas, or another carbon-based feedstock.
摘要:
An explosive device and methods for forming same, the device comprising a portion of nitrous oxide and a portion of fuel. In one example, the explosive device may include a first storage area containing said portion of nitrous oxide, and a second storage area containing said portion of fuel, wherein the first storage area selectively maintains the portion of nitrous oxide separated from the fuel in the second storage area prior to detonation of the explosive device. In another example, in the event the explosive fails to detonate, the explosive device may include a vent valve for discharging the nitrous oxide from the explosive device to reduce or eliminate its explosive characteristics. The explosive device can be used for various applications, including but not limited to military weapons, pyrotechnic devices, or civil blasting explosives, for example.