摘要:
A process forms a phase change memory cell using a resistive element and a memory region of a phase change material. The resistive element has a first thin portion having a first sublithographic dimension in a first direction; and the memory region has a second thin portion having a second sublithographic dimension in a second direction transverse to the first dimension. The first thin portion and the second thin portion are in direct electrical contact and define a contact area of sublithographic extension. The second thin portion is delimited laterally by oxide spacer portions surrounded by a mold layer which defines a lithographic opening. The spacer portions are formed after forming the lithographic opening, by a spacer formation technique.
摘要:
The phase change memory cell is formed by a resistive element and by a memory region of a phase change material. The resistive element has a first thin portion having a first sublithographic dimension in a first direction; and the memory region has a second thin portion having a second sublithographic dimension in a second direction transverse to the first dimension. The first thin portion and the second thin portion are in direct electrical contact and define a contact area of sublithographic extension. The second thin portion is delimited laterally by oxide spacer portions surrounded by a mold layer which defines a lithographic opening. The spacer portions are formed after forming the lithographic opening, by a spacer formation technique.
摘要:
A process forms a phase change memory cell using a resistive element and a memory region of a phase change material. The resistive element has a first thin portion having a first sublithographic dimension in a first direction; and the memory region has a second thin portion having a second sublithographic dimension in a second direction transverse to the first dimension. The first thin portion and the second thin portion are in direct electrical contact and define a contact area of sublithographic extension. The second thin portion is delimited laterally by oxide spacer portions surrounded by a mold layer which defines a lithographic opening. The spacer portions are formed after forming the lithographic opening, by a spacer formation technique.
摘要:
A process forms a phase change memory cell using a resistive element and a memory region of a phase change material. The resistive element has a first thin portion having a first sublithographic dimension in a first direction; and the memory region has a second thin portion having a second sublithographic dimension in a second direction transverse to the first dimension. The first thin portion and the second thin portion are in direct electrical contact and define a contact area of sublithographic extension. The second thin portion is delimited laterally by oxide spacer portions surrounded by a mold layer which defines a lithographic opening. The spacer portions are formed after forming the lithographic opening, by a spacer formation technique.
摘要:
A process forms a phase change memory cell using a resistive element and a memory region of a phase change material. The resistive element has a first thin portion having a first sublithographic dimension in a first direction; and the memory region has a second thin portion having a second sublithographic dimension in a second direction transverse to the first dimension. The first thin portion and the second thin portion are in direct electrical contact and define a contact area of sublithographic extension. The second thin portion is delimited laterally by oxide spacer portions surrounded by a mold layer which defines a lithographic opening. The spacer portions are formed after forming the lithographic opening, by a spacer formation technique.
摘要:
A process wherein an insulating region is formed in a body at least around an array portion of a semiconductor body; a gate electrode of semiconductor material is formed on top of a circuitry portion of the semiconductor body; a first silicide protection mask is formed on top of the array portion; the gate electrode and the active areas of the circuitry portion are silicided and the first silicide protection mask is removed. The first silicide protection mask (is of polysilicon and is formed simultaneously with the gate electrode. A second silicide protection mask of dielectric material covering the first silicide protection mask is formed before silicidation of the gate electrode. The second silicide protection mask is formed simultaneously with spacers formed laterally to the gate electrode.
摘要:
The use of an O--N--RTN (Oxide-Nitride-Rapid Thermal Nitrided Polysilicon) interpoly dielectric multilayer instead of a customary O--N--O (Oxide-Nitride-Oxide) multilayer in the floating gate structure of a progammable, read-only memory cell has beneficial effects on the performance of the cell and facilitates its scaling.
摘要:
The use of an O--N--RTN (Oxide-Nitride-Rapid Thermal Nitrided Polysilicon) interpoly dielectric multilayer instead of a customary O--N--O (Oxide-Nitride-Oxide) multilayer in the floating gate structure of a progammable, read-only memory cell has beneficial effects on the performance of the cell and facilitates its scaling.