Abstract:
A reagent management system is disclosed comprising a reagent container section for receiving reagent containers and a reagent reconstitution device for reconstituting dry, or lyophilized, reagents or concentrated reagents in reagent containers in order to carry out in-vitro diagnostic tests with the reconstituted reagents. A controller is programmed to instruct the reagent reconstitution device to automatically reconstitute an initial volume of a selected reagent type in reagent containers. The initial volume is calculated based on an open container stability time (OCS) of the reconstituted reagent type for each reagent container and on a number of tests to be carried out within the OCS of the reconstituted reagent type. A reagent container for use by the reagent management system and methods of automatically reconstituting a dry, or lyophilized reagent, or a concentrated liquid reagent in a reagent container to carry out an in-vitro diagnostic test with the reagent are disclosed.
Abstract:
A reagent management system is disclosed comprising a reagent container section for receiving reagent containers and a reagent reconstitution device for reconstituting dry, or lyophilized, reagents or concentrated reagents in reagent containers in order to carry out in-vitro diagnostic tests with the reconstituted reagents. A controller is programmed to instruct the reagent reconstitution device to automatically reconstitute an initial volume of a selected reagent type in reagent containers. The initial volume is calculated based on an open container stability time (OCS) of the reconstituted reagent type for each reagent container and on a number of tests to be carried out within the OCS of the reconstituted reagent type. A reagent container for use by the reagent management system and methods of automatically reconstituting a dry, or lyophilized reagent, or a concentrated liquid reagent in a reagent container to carry out an in-vitro diagnostic test with the reagent are disclosed.
Abstract:
A reagent management system is disclosed comprising a reagent container section for receiving reagent containers and a reagent reconstitution device for reconstituting dry, or lyophilized, reagents or concentrated reagents in reagent containers in order to carry out in-vitro diagnostic tests with the reconstituted reagents. A controller is programmed to instruct the reagent reconstitution device to automatically reconstitute an initial volume of a selected reagent type in reagent containers. The initial volume is calculated based on an open container stability time (OCS) of the reconstituted reagent type for each reagent container and on a number of tests to be carried out within the OCS of the reconstituted reagent type. A reagent container for use by the reagent management system and methods of automatically reconstituting a dry, or lyophilized reagent, or a concentrated liquid reagent in a reagent container to carry out an in-vitro diagnostic test with the reagent are disclosed.
Abstract:
The present invention concerns diagnostic methods for coagulation testing involving determining anticoagulant activity elicited by a first anticoagulant in a sample comprising measuring a first Factor Xa activity in a body fluid test sample of said subject, measuring a second Factor Xa activity in at least one calibrator sample comprising a predefined anticoagulation activity for a second anticoagulant, calculating an universal parameter for the anticoagulation activity comprised in the test sample based on the first and the second measured Factor Xa activities and comparing the said parameter for the anticoagulation activity with predefined ranges of expected anticoagulation activity for at least three anticoagulants. Further provided is a computer program code assisting the method as well as a system for carrying out the said method as well as a kit.
Abstract:
The present invention concerns diagnostic methods for coagulation testing involving determining anticoagulant activity elicited by a first anticoagulant in a sample comprising measuring a first Factor Xa activity in a body fluid test sample of said subject, measuring a second Factor Xa activity in at least one calibrator sample comprising a predefined anticoagulation activity for a second anticoagulant, calculating an universal parameter for the anticoagulation activity comprised in the test sample based on the first and the second measured Factor Xa activities and comparing the said parameter for the anticoagulation activity with predefined ranges of expected anticoagulation activity for at least three anticoagulants. Further provided is a computer program code assisting the method as well as a system for carrying out the said method as well as a kit.