Abstract:
A coding for a medical disposable item is proposed comprising at least one information component in encoded form. Associated encoding methods and devices, and associated decoding methods and devices, are also proposed. The coding generally comprises an optical information component comprising one or more fields filled with a gray-scale value up to a certain degree of filling. Each gray-scale value and degree of filling are associated as a value pair determined as part of a code generated to correlate to an information component desired to be applied to and conveyed from a medical disposable item to an associated device that utilizes such items.
Abstract:
The invention also relates to compounds, which are useful for intra-molecular fluorescence resonance energy transfer (FRET), comprising the oxidized form of a carbaNADH-based first fluorophore and a second fluorophore that is excitable at a wave-length of between 445 to 540 nm and that has an emission maximum of greater than 560 nm, and methods, kits and compositions related thereto.
Abstract:
The invention also relates to compounds, which are useful for intra-molecular fluorescence resonance energy transfer (FRET), comprising the oxidized form of a carbaNADH-based first fluorophore and a second fluorophore that is excitable at a wave-length of between 445 to 540 nm and that has an emission maximum of greater than 560 nm, and methods, kits and compositions related thereto.
Abstract:
A device is proposed for detecting at least one analyte in a bodily fluid. The device comprises at least one test element with at least one two-dimensional evaluation region. The device furthermore comprises at least one spatially resolving optical detector having a plurality of pixels. The detector is designed to image at least part of the test element onto an image region. In the process, at least part of the evaluation region is imaged onto an evaluation image region. The detector is matched to the test element such that a predetermined minimum number of pixels is provided for each dimension within the evaluation image region. The pixels are arranged in a two-dimensional matrix arrangement. The matrix arrangement has pixel rows and pixel columns, wherein the pixel rows are arranged substantially parallel to a longitudinal direction of the evaluation region and/or of the evaluation image region.
Abstract:
An analytical apparatus is disclosed for detecting at least one analyte in a sample, where in an analyte measurement at least an electrical or optical property changeable by presence of the analyte at least one test chemical of a test element is recorded, and where the analytical apparatus also can perform at least one quality measurement on the at least one test chemical such as an intrinsic luminescence, which is recorded and from the intrinsic luminescence a conclusion is drawn on a quality of the test chemical and thus the test element. Methods also are disclosed for detecting at least one analyte in a sample that include a quality measurement of the at least one test chemical of the test strip.
Abstract:
A coding for a medical disposable item is proposed comprising at least one information component in encoded form. Associated encoding methods and devices, and associated decoding methods and devices, are also proposed. The coding generally comprises an optical information component comprising one or more fields filled with a gray-scale value up to a certain degree of filling. Each gray-scale value and degree of filling are associated as a value pair determined as part of a code generated to correlate to an information component desired to be applied to and conveyed from a medical disposable item to an associated device that utilizes such items.
Abstract:
A device is proposed for detecting at least one analyte in a bodily fluid. The device comprises at least one test element with at least one two-dimensional evaluation region. The device furthermore comprises at least one spatially resolving optical detector having a plurality of pixels. The detector is designed to image at least part of the test element onto an image region. In the process, at least part of the evaluation region is imaged onto an evaluation image region. The detector is matched to the test element such that a predetermined minimum number of pixels is provided for each dimension within the evaluation image region. The pixels are arranged in a two-dimensional matrix arrangement. The matrix arrangement has pixel rows and pixel columns, wherein the pixel rows are arranged substantially parallel to a longitudinal direction of the evaluation region and/or of the evaluation image region.