Abstract:
Systems, methods, and software described herein manage tickets in an industrial automation environment. In one implementation, a ticket management service is configured to obtain a plurality of tickets from a plurality of data sources and extract attributes from each ticket in the plurality of tickets. Once extracted, the ticket management service may, for each ticket in the plurality of tickets, generate at least one ticket in a unified format and add the at least one ticket to a ticket database. The ticket management service may then use the ticket database to present ticket summaries to users associated with the industrial automation environment.
Abstract:
A cloud-based analytics engine that analyzes data relating to an industrial automation system(s) to facilitate enhancing operation of the industrial automation system(s) is presented. The analytics engine can interface with the industrial automation system(s) via a cloud gateway(s) and can analyze industrial-related data obtained from the industrial automation system(s). The analytics engine can determine correlations between respective portions or aspects of the system(s), between a portion(s) or aspect(s) of the system(s) and extrinsic events or conditions, or between an employee(s) and the system(s). The analytics engine can determine and provide recommendations or instructions in connection with the industrial automation system(s) to enhance system performance based on the determined correlations. The analytics engine also can determine when there is a deviation or potential of deviation from desired system performance by an industrial asset or employee, and provide a notification, a recommendation, or an instruction to rectify or avoid the deviation.
Abstract:
Various embodiments of the present technology provide an integrated platform that provides optimization tools that can be used across multiple lifecycle phases of an industrial automation system. In accordance with various embodiments, the integrated platform can take specified designs in a presale phase and easily open up that information in a corresponding tool to address needs in the post-sale phase to allow for all device commissioning, programming, and configuration without any importing, exporting, or recreation of presale files. Various embodiments use a common, cross-platform data file that links activity within each lifecycle phase. As such, any layouts or designs can be easily opened up within the platform by users with differing roles. Moreover, if in the post-sale phase, a control engineer decides that a specific aspect of control system was left out, the control engineer can summon the capability of the presale phase to expand the system.
Abstract:
The technology disclosed herein enables presentation of a risk overview based off of the product lifecycles for components in an industrial environment. In a particular embodiment, a method includes, in a lifecycle management system, identifying components of an industrial system having a product lifecycle and determining the product lifecycles for the components. The method further includes determining a number of replacements for the components in an inventory for the industrial system. The method also includes presenting a risk overview for the industrial system based on the product lifecycles and the number of replacements.
Abstract:
In one embodiment, a non-transitory computer readable medium may include computer-executable instructions that, when executed by a processor, may receive a first set of data associated with a user, receive a second set of data associated with one or more lockout procedures performed by the user, receive a request to actuate a locking mechanism of an electronic lock configured to prevent a machine in an industrial automation application from being operational, and send a signal to the electronic lock to actuate the locking mechanism when the second set of data indicates that the lockout procedures have been performed by the user and the data corresponds to an authorized user.
Abstract:
The subject matter disclosed herein relates generally to industrial automation systems, and, more particularly, to collecting video streams from a variety of video devices in an industrial environment, identifying and analyzing potential problems in the industrial environment using the video streams, and presenting the video streams and data associated with the potential problem to appropriate recipients.
Abstract:
In one embodiment, a system may include a multi-purpose sensor coupled to a machine operating in an industrial environment. The multi-purpose sensor may include a camera that obtains a first and second set of image data including images of the machine and an environment surrounding the machine. The first set of image data is associated with a baseline of the machine and the environment, and the second set of image data is acquired subsequent to when the first set is acquired. The system may include a computing device that may include a processor to receive the first and second set of image data, determine baseline positions of objects in the first set, determine subsequent positions of the objects in the second set, determine whether the subsequent positions vary from the baseline positions, and perform an action when the subsequent positions vary from the baseline positions.
Abstract:
The technology disclosed herein enables automation of component sourcing when designing a process system in an industrial environment. In a particular embodiment, a method includes receiving design specifications of a process system in an industrial environment via a system design application. The method further includes determining components to implement the process system from the design specifications and identifying a first subset of the components for sourcing from an external provider. The method also includes populating the first subset into a component sourcing application.
Abstract:
A cloud-based analytics engine that analyzes data relating to an industrial automation system(s) to facilitate enhancing operation of the industrial automation system(s) is presented. The analytics engine can interface with the industrial automation system(s) via a cloud gateway(s) and can analyze industrial-related data obtained from the industrial automation system(s). The analytics engine can determine correlations between respective portions or aspects of the system(s), between a portion(s) or aspect(s) of the system(s) and extrinsic events or conditions, or between an employee(s) and the system(s). The analytics engine can determine and provide recommendations or instructions in connection with the industrial automation system(s) to enhance system performance based on the determined correlations. The analytics engine also can determine when there is a deviation or potential of deviation from desired system performance by an industrial asset or employee, and provide a notification, a recommendation, or an instruction to rectify or avoid the deviation.
Abstract:
A cloud-based analytics engine that analyzes data relating to an industrial automation system(s) to facilitate enhancing operation of the industrial automation system(s) is presented. The analytics engine can interface with the industrial automation system(s) via a cloud gateway(s) and can analyze industrial-related data obtained from the industrial automation system(s). The analytics engine can determine correlations between respective portions or aspects of the system(s), between a portion(s) or aspect(s) of the system(s) and extrinsic events or conditions, or between an employee(s) and the system(s). The analytics engine can determine and provide recommendations or instructions in connection with the industrial automation system(s) to enhance system performance based on the determined correlations. The analytics engine also can determine when there is a deviation or potential of deviation from desired system performance by an industrial asset or employee, and provide a notification, a recommendation, or an instruction to rectify or avoid the deviation.