摘要:
The fabrication of integrated circuits comprising resistors having the same structure but different sheet resistances is disclosed herein. In one embodiment, a method of fabricating an integrated circuit comprises: concurrently forming a first resistor laterally spaced from a second resistor above or within a semiconductor substrate, the first and second resistors comprising a doped semiconductive material; depositing a dopant receiving material across the first and second resistors and the semiconductor substrate; removing the dopant receiving material from upon the first resistor while retaining the dopant receiving material upon the second resistor; and annealing the first and second resistors to cause a first sheet resistance of the first resistor to be different from a second sheet resistance of the second resistor.
摘要:
The fabrication of integrated circuits comprising resistors having the same structure but different sheet resistances is disclosed herein. In one embodiment, a method of fabricating an integrated circuit comprises: concurrently forming a first resistor laterally spaced from a second resistor above or within a semiconductor substrate, the first and second resistors comprising a doped semiconductive material; depositing a dopant receiving material across the first and second resistors and the semiconductor substrate; removing the dopant receiving material from upon the first resistor while retaining the dopant receiving material upon the second resistor; and annealing the first and second resistors to cause a first sheet resistance of the first resistor to be different from a second sheet resistance of the second resistor.
摘要:
A method of forming an MIM capacitor having interdigitated capacitor plates. Metal and dielectric layers are alternately deposited in an opening in a layer of insulator material. After each deposition of the metal layer, the metal layer is removed at an angle from the side to form the capacitor plate. The side from which the metal layer is removed is alternated with every metal layer that is deposited. When all the capacitor plates have been formed, the remaining opening in the layer of insulator material is filled with dielectric material then planarized, followed by the formation of contacts with the capacitor plates. There is also an MIM capacitor structure having interdigitated capacitor plates.
摘要:
Each of a hot-carrier non-volatile memory device and a method for fabricating the hot carrier non-volatile memory device is predicated upon a semiconductor structure and related method that includes a metal oxide semiconductor field effect transistor structure. The semiconductor structure and related method include at least one of: (1) a spacer that comprises a dielectric material having a dielectric constant greater than 7 (for enhanced hot carrier derived charge capture and retention); and (2) a drain region that comprises a semiconductor material that has a narrower bandgap than a bandgap of a semiconductor material from which is comprised a channel region (for enhanced impact ionization and charged carrier generation).
摘要:
A structure and method to fabricate a body contact on a transistor is disclosed. The method comprises forming a semiconductor structure with a transistor on a handle wafer. The structure is then inverted, and the handle wafer is removed. A silicided body contact is then formed on the transistor in the inverted position. The body contact may be connected to neighboring vias to connect the body contact to other structures or levels to form an integrated circuit.
摘要:
A structure and method to fabricate a body contact on a transistor is disclosed. The method comprises forming a semiconductor structure with a transistor on a handle wafer. The structure is then inverted, and the handle wafer is removed. A silicided body contact is then formed on the transistor in the inverted position. The body contact may be connected to neighboring vias to connect the body contact to other structures or levels to form an integrated circuit.
摘要:
A method of forming an MIM capacitor having interdigitated capacitor plates. Metal and dielectric layers are alternately deposited in an opening in a layer of insulator material. After each deposition of the metal layer, the metal layer is removed at an angle from the side to form the capacitor plate. The side from which the metal layer is removed is alternated with every metal layer that is deposited. When all the capacitor plates have been formed, the remaining opening in the layer of insulator material is filled with dielectric material then planarized, followed by the formation of contacts with the capacitor plates. There is also an MIM capacitor structure having interdigitated capacitor plates.
摘要:
Each of a hot-carrier non-volatile memory device and a method for fabricating the hot carrier non-volatile memory device is predicated upon a semiconductor structure and related method that includes a metal oxide semiconductor field effect transistor structure. The semiconductor structure and related method include at least one of: (1) a spacer that comprises a dielectric material having a dielectric constant greater than 7 (for enhanced hot carrier derived charge capture and retention); and (2) a drain region that comprises a semiconductor material that has a narrower bandgap than a bandgap of a semiconductor material from which is comprised a channel region (for enhanced impact ionization and charged carrier generation).
摘要:
An integrated circuit comprising an N+ type layer, a buffer layer arranged on the N+ type layer; a P type region formed on with the buffer layer; an insulator layer overlying the N+ type layer, a silicon layer overlying the insulator layer, an embedded RAM FET formed in the silicon layer and connected with a conductive node of a trench capacitor that extends into the N+ type layer, the N+ type layer forming a plate electrode of the trench capacitor, a first contact through the silicon layer and the insulating layer and electrically connecting to the N+ type layer, a first logic RAM FET formed in the silicon layer above the P type region, the P type region functional as a P-type back gate of the first logic RAM FET, and a second contact through the silicon layer and the insulating layer and electrically connecting to the P type region.
摘要:
An integrated circuit includes an SOI substrate with a unitary N+ layer below the BOX, a P region in the N+ layer, an eDRAM with an N+ plate, and logic/SRAM devices above the P region. The P region functions as a back gate of the logic/SRAM devices. An optional intrinsic (undoped) layer can be formed between the P back gate layer and the N+ layer to reduce the junction field and lower the junction leakage between the P back gate and the N+ layer. In another embodiment an N or N+ back gate can be formed in the P region. The N+ back gate functions as a second back gate of the logic/SRAM devices. The N+ plate of the SOI eDRAM, the P back gate, and the N+ back gate can be electrically biased at the same or different voltage potentials. Methods to fabricate the integrated circuits are also disclosed.
摘要翻译:集成电路包括在BOX下方具有单一N +层的SOI衬底,N +层中的P区,N +板的eDRAM和P区上方的逻辑/ SRAM器件。 P区域用作逻辑/ SRAM器件的后门。 可以在P背栅层和N +层之间形成可选的本征(未掺杂)层,以减少结场并降低P背栅与N +层之间的结泄漏。 在另一个实施例中,可以在P区中形成N或N +背栅。 N +后门作为逻辑/ SRAM器件的第二个后门。 SOI eDRAM的N +板,P背栅极和N +背栅极可以在相同或不同的电压电位下被电偏置。 还公开了制造集成电路的方法。