Abstract:
A method is disclosed that may include forming a first layer of insulating material above a semiconducting substrate, forming an aluminum oxide layer above the first layer of insulating material, forming a plurality of spaced-apart dots of material on the aluminum oxide layer, forming a second layer of insulating material on portions of the aluminum oxide layer not covered by the spaced-apart dots of material, forming a conductive layer above the second layer of insulating material and the plurality of spaced-apart dots of material, and removing excess portions of the layer of conductive material and the second layer of insulating material. A device is disclosed that may include a substrate and a floating gate electrode positioned above a tunnel insulation layer, the floating gate electrode including a layer of insulating material and a plurality of spaced-apart dots of material, each of which have a conductive nano-dot positioned on the dot of material, the dots of material and the conductive nano-dots being positioned in the layer of insulating material.
Abstract:
The present disclosure suggests several systems and methods for batch processing of microfeature workpieces, e.g., semiconductor wafers or the like. One exemplary implementation provides a method of depositing a reaction product on each of a batch of workpieces positioned in a process chamber in a spaced-apart relationship. A first gas may be delivered to an elongate first delivery conduit that includes a plurality of outlets spaced along a length of the conduit. A first gas flow may be directed by the outlets to flow into at least one of the process spaces between adjacent workpieces along a first vector that is transverse to the direction in which the workpieces are spaced. A second gas may be delivered to an elongate second delivery conduit that also has outlets spaced along its length. A second gas flow of the second gas may be directed by the outlets to flow into the process spaces along a second vector that is transverse to the first direction.
Abstract:
The present disclosure provides methods and systems for controlling temperature. The method has particular utility in connection with controlling temperature in a deposition process, e.g., in depositing a heat-reflective material via CVD. One exemplary embodiment provides a method that involves monitoring a first temperature outside the deposition chamber and a second temperature inside the deposition chamber. An internal temperature in the deposition chamber can be increased in accordance with a ramp profile by (a) comparing a control temperature to a target temperature, and (b) selectively delivering heat to the deposition chamber in response to a result of the comparison. The target temperature may be determined in accordance with the ramp profile, but the control temperature in one implementation alternates between the first temperature and the second temperature.
Abstract:
Complementary transistors and methods of forming the complementary transistors on a semiconductor assembly are described. The transistors are formed with an optional interfacial oxide, such as SiO2 or oxy-nitride, to overlay a semiconductor substrate which will be conductively doped for PMOS and NMOS regions. Then a dielectric possessing a high dielectric constant of least seven or greater (also referred to as a high-k dielectric) is deposited on the interfacial oxide. The high-k dielectric is covered with a thin monolayer of metal oxide (i.e., aluminum oxide, Al2O3) that is removed from the NMOS regions, but remains in the PMOS regions. The resulting NMOS transistor diffusion regions contain predominately metal to silicon bonds that create predominately Fermi level pinning near the valence band while the resulting PMOS transistor diffusion regions contain metal to silicon bonds that create predominately Fermi level pinning near the conduction band.
Abstract translation:描述了在半导体组件上形成互补晶体管的互补晶体管和方法。 晶体管形成有可选的界面氧化物,例如SiO 2或氧化氮化物,以覆盖将被导电掺杂用于PMOS和NMOS区域的半导体衬底。 然后,在界面氧化物上沉积具有至少七个以上的高介电常数(也称为高k电介质)的电介质。 高k电介质覆盖有从NMOS区域去除的金属氧化物(即,氧化铝,Al 2 O 3 O 3)的薄单层,但保留在 PMOS区域。 所得到的NMOS晶体管扩散区域主要含有金属与硅键,其主要在价带附近产生费米能级钉扎,而所得的PMOS晶体管扩散区域含有金属与硅键,主要在导带附近产生费米能级钉扎。
Abstract:
The present disclosure suggests several systems and methods for batch processing of microfeature workpieces, e.g., semiconductor wafers or the like. One exemplary implementation provides a method of depositing a reaction product on each of a batch of workpieces positioned in a process chamber in a spaced-apart relationship. A first gas may be delivered to an elongate first delivery conduit that includes a plurality of outlets spaced along a length of the conduit. A first gas flow may be directed by the outlets to flow into at least one of the process spaces between adjacent workpieces along a first vector that is transverse to the direction in which the workpieces are spaced. A second gas may be delivered to an elongate second delivery conduit that also has outlets spaced along its length. A second gas flow of the second gas may be directed by the outlets to flow into the process spaces along a second vector that is transverse to the first direction.
Abstract:
The present disclosure provides methods and apparatus that may be used to process microfeature workpieces, e.g., semiconductor wafers. Some aspects have particular utility in depositing TiN in a batch process. One implementation involves pretreating a surface of a process chamber by contemporaneously introducing first and second pretreatment precursors (e.g., TiCl4 and NH3) to deposit a pretreatment material on a the chamber surface. After the pretreatment, the first microfeature workpiece may be placed in the chamber and TiN may be deposited on the microfeature workpiece by alternately introducing quantities of first and second deposition precursors.
Abstract:
Methods for forming a nitride barrier film layer in semiconductor devices such as gate structures, and barrier layers, semiconductor devices and gate electrodes are provided. The nitride layer is particularly useful as a barrier to boron diffusion into an oxide film. The nitride barrier layer is formed by selectively depositing silicon onto an oxide substrate as a thin layer, and then thermally annealing the silicon layer in a nitrogen-containing species or exposing the silicon to a plasma source of nitrogen to nitridize the silicon layer.
Abstract:
The invention includes a method of forming a programmable memory device. A tunnel oxide is formed to be supported by a semiconductor substrate. A stack is formed over the tunnel oxide. The stack comprises a floating gate, dielectric mass and control gate. The stack has a top, and has opposing sidewalls extending downwardly from the top. The dielectric mass includes silicon nitride. Silicon nitride spacers are formed along sidewalls of the stack, and a silicon nitride cap is formed over a top of the stack. The silicon nitride within the dielectric mass, cap and/or sidewall spacers is formed from trichlorosilane and ammonia.
Abstract:
The present disclosure suggests several systems and methods for batch processing of microfeature workpieces, e.g., semiconductor wafers or the like. One exemplary implementation provides a method of depositing a reaction product on each of a batch of workpieces positioned in a process chamber in a spaced-apart relationship. A first gas may be delivered to an elongate first delivery conduit that includes a plurality of outlets spaced along a length of the conduit. A first gas flow may be directed by the outlets to flow into at least one of the process spaces between adjacent workpieces along a first vector that is transverse to the direction in which the workpieces are spaced. A second gas may be delivered to an elongate second delivery conduit that also has outlets spaced along its length. A second gas flow of the second gas may be directed by the outlets to flow into the process spaces along a second vector that is transverse to the first direction.
Abstract:
A method of adjusting the threshold voltage of semiconductor devices by incorporating nitride into the isolation layer so as to decrease the mobility of charge carriers and thereby increase the threshold voltage required to activate the device. The nitrogen incorporation method may comprise of decoupled plasma nitridization (DPN) and the DPN can be performed in-situ during gate oxide formation. The amount of threshold voltage can be varied by adjusting the DPN treatment time and processing parameters.