摘要:
An energy storage and management system (ESMS) includes one or more energy storage devices configured to store electrical energy, a power electronic conversion system having a plurality of energy ports and including a plurality of DC electrical converters, and a controller configured to split a source current flowing from an electrical source that is connected to one of the plurality of energy ports into a first current and a second current, wherein the first and second currents flows respectively first and second of the plurality of DC converters, alter the first current and the second current by selectively turning on and turning off current flow to the first and second DC converters, and form a charging current by passing the first current and the second current simultaneously to a first of the one or more energy storage devices that is coupled to a second of the plurality of energy ports.
摘要:
An energy storage and management system (ESMS) includes one or more energy storage devices configured to store electrical energy, a power electronic conversion system having a plurality of energy ports and including a plurality of DC electrical converters, and a controller configured to split a source current flowing from an electrical source that is connected to one of the plurality of energy ports into a first current and a second current, wherein the first and second currents flows respectively first and second of the plurality of DC converters, alter the first current and the second current by selectively turning on and turning off current flow to the first and second DC converters, and form a charging current by passing the first current and the second current simultaneously to a first of the one or more energy storage devices that is coupled to a second of the plurality of energy ports.
摘要:
An energy storage and management system (ESMS) includes energy storage devices coupled to a power device, a power electronic conversion system that includes a plurality of DC electrical converters, each DC electrical converter configured to step up and to step down a DC voltage, wherein energy ports of the ESMS are coupleable to each of the energy storage devices, and each of the energy ports is coupleable to an electrical charging system. The ESMS includes a controller configured to determine a first condition of a first energy storage device and a second condition of a second energy storage device, wherein the first and second energy storage devices are each connected to respective energy ports of the power conversion system, determine a power split factor based on the first condition and on the second condition, and regulate power to the first and second energy storage devices based on the power split factor.
摘要:
A system for transferring energy from an energy source includes a first energy source, a DC link coupled to a DC load, a first DC-to-DC voltage converter coupled to the DC link, and a second DC-to-DC voltage converter coupled to the first energy source. A controller is coupled to the first and second DC-to-DC voltage converters and configured to determine a voltage level of the first energy source and of the DC link. If the voltage level of the DC link is less than the voltage level of the first energy source, the controller controls the second DC-to-DC voltage converter to draw energy from the first energy source to cause the DC voltage output from the first energy source and supplied to the first DC-to-DC voltage converter to be below the DC load voltage supplied to the DC link via the first DC-to-DC voltage converter.
摘要:
An electric vehicle includes a controller configured to receive sensor feedback from a high voltage storage device and from a low voltage storage device, compare the sensor feedback to operating limits of the respective high and low voltage storage device, determine, based on the comparison a total charging current to the high voltage storage device and to the low voltage storage device and a power split factor of the total charging current to the high voltage device and to the low voltage device, and regulate the total power to the low voltage storage device and the high voltage storage device based on the determination.
摘要:
An energy storage and management system (ESMS) includes energy storage devices coupled to a power device, a power electronic conversion system that includes a plurality of DC electrical converters, each DC electrical converter configured to step up and to step down a DC voltage, wherein energy ports of the ESMS are coupleable to each of the energy storage devices, and each of the energy ports is coupleable to an electrical charging system. The ESMS includes a controller configured to determine a first condition of a first energy storage device and a second condition of a second energy storage device, wherein the first and second energy storage devices are each connected to respective energy ports of the power conversion system, determine a power split factor based on the first condition and on the second condition, and regulate power to the first and second energy storage devices based on the power split factor.
摘要:
A contactor unit includes an input lead connectable to a first lead of an energy output device, an output lead connectable to a first lead of a voltage bus, a contactor that connects and disconnects the input lead from the output lead, a driver configured to operate the contactor, a serial data link connectable to a system controller that is external to the contactor unit, and an integrated circuit (IC) positioned within the contactor unit and configured to output a control command to the driver to open the contactor based on at least one of a current in either the input lead or the output lead and a voltage differential across the contactor, and output a contactor control status via the serial data link.
摘要:
A system for transferring energy from an energy source includes a first energy source, a DC link coupled to a DC load, a first DC-to-DC voltage converter coupled to the DC link, and a second DC-to-DC voltage converter coupled to the first energy source. A controller is coupled to the first and second DC-to-DC voltage converters and configured to determine a voltage level of the first energy source and of the DC link. If the voltage level of the DC link is less than the voltage level of the first energy source, the controller controls the second DC-to-DC voltage converter to draw energy from the first energy source to cause the DC voltage output from the first energy source and supplied to the first DC-to-DC voltage converter to be below the DC load voltage supplied to the DC link via the first DC-to-DC voltage converter.
摘要:
An apparatus for transferring energy using onboard power electronics with high-frequency transformer isolation includes a power electronic drive circuit comprises a dc bus and a first energy storage device coupled to the dc bus. A first bi-directional dc-to-ac voltage inverter is coupled to the first energy storage device and to the dc bus, and a first electromechanical device coupled to the first bi-directional dc-to-ac voltage inverter. A charging system coupled to the dc bus via a charge bus comprises a receptacle configured to mate with a connector coupled to a voltage source external to the power electronic drive circuit and an isolation transformer configured to electrically isolate the charge bus from the receptacle. A controller configured to cause the charging system to supply a charging voltage to the dc bus based on a voltage received from the voltage source external to the power electronic drive circuit.
摘要:
An electric vehicle includes a controller configured to receive sensor feedback from a high voltage storage device and from a low voltage storage device, compare the sensor feedback to operating limits of the respective high and low voltage storage device, determine, based on the comparison a total charging current to the high voltage storage device and to the low voltage storage device and a power split factor of the total charging current to the high voltage device and to the low voltage device, and regulate the total power to the low voltage storage device and the high voltage storage device based on the determination.