摘要:
A gas-solids reaction system with termination devices to connect a riser with one or more separation devices. The termination devices have a radius of curvature that is at least 1.0 times as great as the diameter of the conduit forming the termination device. The termination devices can be openly or closely coupled to the separation devices.
摘要:
This invention relates to efficiently regenerating catalyst particles by minimizing the formation of localized “hot spots” and “cold spots” in a regeneration zone. Specifically this invention relates to a method for controlling regenerator temperature in an oxygenates-to-olefins system, comprising the steps of: contacting an oxygenate feed in a reactor with a catalytically effective amount of molecular sieve-containing catalyst under conditions effective for converting said oxygenate to a product containing light olefins and forming a coked catalyst; contacting a portion of the coked catalyst in a regenerator, having a catalyst bed height (Hc), an inlet height (Hi), and an outlet height (Ho), with an oxygen-containing regeneration medium under conditions effective to at least partially regenerate the coked catalyst; and conducting a portion of the catalyst from the regenerator to a catalyst cooler to form a cooled catalyst portion, wherein Ho is greater than Hi.
摘要:
A process and apparatus for fluidizing a population of catalyst particles having a low catalyst fines content includes a fluidized bed reactor which includes a plurality of catalyst particles in the reactor wherein the catalyst particles having a d2 value of greater than about 40 microns. The catalyst particles are contacted with a fluidizing medium under conditions to fluidize the particles, the reactor includes a continuous reaction zone and separation zone and the fluidized of the catalyst particles are situated within the reaction and both the reaction zone and the separation zone include obstructing members which obstruct the flow of particles such that the catalyst particles can be maintained at an axial gas Peclet number from about 10 to about 20.
摘要:
A multi-stage gas-solids separator is configured so that the higher density (solids) output flows of two or more of the separator stages are merged together. The multi-stage separator is preferably composed of cyclone separators, with the diplegs of at least two of the cyclone separator stages merged together.
摘要:
The present invention relates to processes for fluidizing a population of catalyst particles that are depleted of catalyst fines. In one embodiment, the process includes providing a plurality of catalyst particles in the reactor, wherein the catalyst particles have a d2 value of greater than about 40 microns. The catalyst particles are contacted with a fluidizing medium under conditions effective to cause the catalyst particles to behave in a fluidized manner and form a fluidized bed. The particles are contacted with one or more primary obstructing members while in the fluidized bed. By fluidizing the catalyst particles in this manner, the catalyst particles can be maintained at an axial gas Peclet number of from about 10 to about 20.
摘要:
Catalyst losses are prevented in riser reactor systems by using a low inlet velocity for the first cyclone separator in each multi-stage cyclone separator in the reactor. Catalyst particles not separated from the product output flow in an oxygenate-to-olefin reactor are also recaptured by cooling the product output flow and passing the flow through an electrostatic precipitator.
摘要:
This invention is directed to methods of converting oxygenates to olefin products. The methods provided include steps for protecting against deactivation of active molecular sieve catalysts during the conversion process. In particular, the invention provides for methods of regenerating coked catalyst to minimize catalyst deactivation due to contact with moisture.
摘要:
This invention is directed to methods of converting oxygenates to olefin products. The methods provided include steps for protecting against deactivation of active molecular sieve catalysts during the conversion process. In particular, the invention provides for methods of regenerating coked catalyst to minimize catalyst deactivation due to contact with moisture.
摘要:
This invention relates to efficiently regenerating catalyst particles by minimizing the formation of localized “hot spots” and “cold spots” in a regeneration zone. In one embodiment, the invention includes mixing spent catalyst from a reactor and cold catalyst from a catalyst cooler in a mixing zone and directing the mixed catalyst to the regeneration zone in a fluidized manner with a fluidizing medium. In the regeneration zone, the mixed catalyst contacts an oxygen-containing regeneration medium under conditions effective to regenerate the spent catalyst contained therein.
摘要:
The invention is directed to methods of transfering catalyst particles into and within reaction systems. The reaction systems are those that use catalysts that comprise molecular sieves, particularly metalloaluminophosphate molecular sieves, especially metalloaluminophosphate molecular sieves which are susceptible to loss of catalytic activity due to contact with water molecules. The transfer methods provide appropriate mechanisms for transporting catalyst into and within a reactor to protect against loss of catalytic activity that can occur due to contact with water molecules.