摘要:
A characteristic detecting unit detects characteristics of a digital imaged signal at every phase shift interval set in advance. A timing adjustment unit gives a phase adjustment instruction of a pulse so as to converge to an imaging phase in the digital imaged signal at which the characteristics are a predetermined value or within a predetermined range. A shift interval switching unit switches the phase shift interval according to photographing conditions of an imaging element.
摘要:
An intended-usage judger judges an intended usage of an inputted digital imaging signal. A selector selects one or a plurality of signals to be inspected from a group of signals constituting the digital imaging signal based on a result of the judgment by the intended-usage judger. A phase adjuster adjusts a phase of a pulse used when the digital imaging signal is picked up based on an output state of the signal to be inspected.
摘要:
An image encoder is provided which receives pixel data of N bits, where N is a natural number, and in which a difference generator calculates a difference between a pixel to be encoded, and a predicted value generated based on at least one pixel located around the pixel to be encoded, a quantizer quantizes a value obtained by subtracting a first offset value from the prediction difference value, and an adder adds the quantized value and a second offset together. An encoded predicted value decider predicts, based on a signal level of the predicted value, an encoded predicted value which is a signal level of the predicted value after encoding. A result of addition of the quantized value and the second offset value is added to or subtracted from the encoded predicted value to obtain encoded data of M bits, where M is a natural number, and N>M.
摘要:
Coding processing performed by an image coding device (100) includes: processing (S133) of performing coding by leaving surplus bit(s), when the digit number B of binary data of the difference value between (a) a value of a to-be-coded pixel and (b) a prediction value is smaller than the predetermined bit number M; and processing (S133) of performing coding by using the surplus bit(s), when the digit number B is greater than M and there are the surplus bit(s). Pieces of coded data each having a predetermined coding amount are generated, by performing processing for each of consecutive T pixels so as to perform the coding processing for each of U pixels among the consecutive T pixels (S136).
摘要:
A visual processing section 120 is provided which performs visual processing on a pixel-by-pixel basis according to a predetermined function defining a relation between a pixel value of a target pixel which is a pixel under visual processing and a pixel value of the target pixel after subjected to the visual processing. An input signal processing section 150 is further provided which performs, on a pixel-by-pixel basis, at least one of signal processing to restore resolution of an image data input to the visual processing section 120 and signal processing to correct signal deterioration due to the visual processing. In the input signal processing section 150, the at least one signal processing is performed according to a gain determined by using the function.
摘要:
An image coding method includes: a predictive pixel generation step of generating a predictive value from at least one surrounding pixel located near a compression target pixel; a code conversion step of code-converting the pixel data to generate a Gray code; and quantizing bit change information (exclusive OR) between the generated Gray code and a Gray code of the predictive value to a quantization value, to compress the pixel data. This prevents significant image quality degradation, so that high image quality can be achieved.
摘要:
A brightness level detector detects a brightness level of the digital imaging signal for each of the plurality of pixels. A shading detector sets a group of pixel regions distant from each other in a horizontal direction in the imaging element and then detects whether or not shadings are generated in the analog imaging signal based on a difference between the brightness levels of the group of pixel regions. A timing adjuster adjusts a phase of a peak sample pulse for detecting a peak level of the analog imaging signal, a phase of a reference sample pulse for detecting a signal level used as a reference in the correlated double sampling executed when the digital imaging signal is generated and a phase of a horizontal transfer pulse in the imaging element based on outputs of the brightness level detector and the shading detector.