Abstract:
A polycarbonate composition includes: a continuous polycarbonate phase; discontinuous first domains distributed in the continuous phase, and comprising a core-shell silicone-(meth)acrylate impact modifier comprising a silicone elastomer core and a (meth)acrylate copolymer shell, wherein the first domains have an aspect ratio of at least 1.7, preferably at least 1.8; and discontinuous second domains distributed in the continuous phase, and comprising an alkenyl aromatic-olefin block copolymer impact modifier, wherein the second domains have an aspect ratio of at least 3, preferably at least 4, and a domain size of 6400 square nanometers or less, more preferably 5700 square nanometers or less. Optionally, the polycarbonate composition includes: a polycarbonate; a brominated polycarbonate different from the polycarbonate; a poly(carbonate-siloxane) comprising 30 to 70 weight percent of siloxane blocks; a core-shell silicone-(meth)acrylate impact modifier comprising a silicone elastomer core and an (meth)acrylate copolymer shell; and an alkenyl aromatic-olefin block copolymer impact modifier.
Abstract:
A polycarbonate composition includes: a continuous polycarbonate phase; discontinuous first domains distributed in the continuous phase, and comprising a core-shell silicone-(meth)acrylate impact modifier comprising a silicone elastomer core and a (meth)acrylate copolymer shell, wherein the first domains have an aspect ratio of at least 1.7, preferably at least 1.8; and discontinuous second domains distributed in the continuous phase, and comprising an alkenyl aromatic-olefin block copolymer impact modifier, wherein the second domains have an aspect ratio of at least 3, preferably at least 4, and a domain size of 6400 square nanometers or less, more preferably 5700 square nanometers or less. Optionally, the polycarbonate composition includes: a polycarbonate; a brominated polycarbonate different from the polycarbonate; a poly(carbonate-siloxane) comprising 30 to 70 weight percent of siloxane blocks; a core-shell silicone-(meth)acrylate impact modifier comprising a silicone elastomer core and an (meth)acrylate copolymer shell; and an alkenyl aromatic-olefin block copolymer impact modifier.
Abstract:
Disclosed herein are processes, apparatuses, and systems for monitoring and/or controlling caustic concentrations in caustic scrubbers. In various aspects, the processes, apparatuses, and systems comprise a real-time online method for measuring the concentration of caustic in process scrubbers wherein a probe is coupled to a spectrometer; collecting absorption data with wavelength range from about 1000 to about 2000 nm. In a further aspect, this technique tracks the use and recharge of caustic in process scrubbers. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
Abstract:
A method of making a polyetherimide includes melt mixing a composition comprising an aromatic bis(ether anhydride) and a diamine to form a polyetherimide wherein melt mixing occurs at a temperature 50 to 225° C. greater than the glass transition temperature of the polyetherimide and after the composition attains a weight average molecular weight that is greater than or equal to 20% of the weight average molecular weight of the polyetherimide melt mixing occurs at a pressure less than atmospheric pressure.
Abstract:
The present invention is to provide processes, apparatuses, and systems for monitoring and/or controlling caustic concentrations in caustic scrubbers. In various aspects, the processes, apparatuses, and systems comprise a real-time online method for measuring the concentration of caustic in process scrubbers wherein a probe is coupled to a spectrometer; collecting absorption data with wavelength range from about 1000 to about 2000 nm. In a further aspect, this technique tracks the use and recharge of caustic in process scrubbers.