Abstract:
A 3-dimensional (3D) flat panel display with a built-in touch screen panel includes a first substrate, a plurality of pixels on the first substrate, a plurality of first electrode patterns spaced apart from one another at a first predetermined interval along a first direction, the plurality of first electrode patterns for driving the plurality of pixels, a second substrate positioned to face the first substrate, and a plurality of barrier patterns formed on an outer surface of the second substrate and spaced apart from one another at a second predetermined interval along a second direction, intersecting the first direction. At least one of the plurality of first electrode patterns and at least one barrier pattern of the plurality of barrier patterns serve as electrodes for the built-in touch screen panel.
Abstract:
A plurality of data signals to be supplied to a first pixel and a second pixel formed by a first sub-pixel, two second sub-pixels, and two third sub-pixels on the display panel are rendered. Input data corresponding to a first sampling window with respect to the second sub-pixel of the first pixel among the input data applied to the stripe pattern is used to render a second data signal supplied to the second sub-pixel through filtering sampled input data for a color of the second sub-pixel. The first data signal to be supplied to the first sub-pixel is rendered through filtering of the input data of a second window unit for a color of the first sub-pixel with respect to the first sub-pixel of the first pixel among the sampled input data.
Abstract:
A controller for a display device includes an adjuster and a compensator. The adjuster adjusts at least one parameter of a modeling equation based on a measured current of a pixel. The modeling equation including the at least one adjusted parameter is indicative of a real time degree of degradation of the pixel. The compensator compensates for image data corresponding to emission of light from the pixel.
Abstract:
An organic light-emitting diode (OLED) display and method for driving the same are disclosed. In one aspect, the OLED display includes a plurality of pixels and a compensation unit configured to receive first image data including a gray scale value for each pixel. The compensation unit accumulates the first image data to generate accumulated data, selects a data compensation method for each pixel based at least in part on the accumulated data, and compensates the gray scale value included in the first image data for each pixel based at least in part on the selected data compensation method to generate second image data. The OLED display also includes a data driver configured to convert the second image data into data signals and apply the data signals to the pixels.
Abstract:
A 3-dimensional (3D) flat panel display with a built-in touch screen panel includes a first substrate, a plurality of pixels on the first substrate, a plurality of first electrode patterns spaced apart from one another at a first predetermined interval along a first direction, the plurality of first electrode patterns for driving the plurality of pixels, a second substrate positioned to face the first substrate, and a plurality of barrier patterns formed on an outer surface of the second substrate and spaced apart from one another at a second predetermined interval along a second direction, intersecting the first direction. At least one of the plurality of first electrode patterns and at least one barrier pattern of the plurality of barrier patterns serve as electrodes for the built-in touch screen panel.
Abstract:
An image sticking controller includes a gamma conversion unit configured to gamma-convert gray scale values respectively corresponding to a plurality of pixels, and to output the gamma-converted gray scale values as gamma conversion values, a data accumulation unit configured to accumulate the gamma conversion values into an accumulation data, the accumulation data including a minimum accumulation value, a maximum difference value indicating a difference between the minimum accumulation value and a maximum accumulation value, and difference values indicating respective differences between the minimum accumulation value and an accumulation value of each of the pixels, an image sticking analysis unit configured to output an image sticking decrease control signal when the maximum difference value is greater than a reference value, and a data conversion unit configured to convert the gray scale values in response to the image sticking decrease control signal, such that image sticking is reduced.
Abstract:
In a sensing device and a method for sending a light by using the same, the sensing device includes: a lower panel; an upper panel facing the lower panel; a liquid crystal layer disposed between the lower panel and the upper panel; an infrared ray sensor formed in at least one of the lower panel and the upper panel; and a visible ray sensor formed in at least one of the lower panel and the upper panel. The sensing device simultaneously includes the infrared ray sensor and the visible ray sensor such that a touch sensing function or an image sensing function having high reliability may be realized.
Abstract:
A method of manufacturing a polarizer includes forming a first layer on a base substrate, forming a first partition wall layer on the first layer, forming a second partition wall layer on the first partition wall, forming a plurality of first partition wall patterns and a plurality of second partition walls disposed on the first partition wall patterns by etching the first partition wall and the second partition wall at the same time, forming a block copolymer layer on the first layer on which the plurality of first partition wall patterns are formed, forming a plurality of fine patterns from the block copolymer layer, and patterning the first layer using the fine patterns and the second partition wall patterns as a mask.
Abstract:
A display panel includes a first substrate comprising a plurality of pixel areas, a second substrate facing the first substrate, a liquid crystal layer interposed between the first substrate and the second substrate, a thin film transistor comprising a gate electrode disposed on the first substrate, a semiconductor pattern overlapping with the gate electrode, a source electrode and a drain electrode overlapping with the semiconductor pattern and spaced apart from each other, a plasmonic color filter to which a common voltage is configured to be applied, and comprising a same material as the gate electrode, disposed on a same layer as the gate electrode, and comprising a plurality of holes through which light is configured to be transmitted and a pixel electrode to which a gray scale voltage is configured to be applied, and overlapping with the plasmonic color filter, and electrically connected to the drain electrode.
Abstract:
Rather than crowding all functionalities into a single monolithically integrated circuit and thus causing concentration of power dissipation, there is provided a touch screen display device in which a multifunctional smart IC is separated from a simplified display driver circuit. The smart IC includes a logic unit for driving a touch screen panel and a logic unit for driving a display panel. The touch screen display device includes not only the touch screen panel, the display panel, the simplified display driver circuit and the smart IC but may further optionally include a controllable power supply that is controlled by the smart IC. The smart IC includes a first logic unit for driving the touch screen panel and a second logic unit for driving the display panel. The display driver circuit is coupled to receive pre-processed display data and a driving synchronization signal from the second logic unit of the smart IC.