Abstract:
There is provided a multilayer ceramic electronic component including a ceramic body including a plurality of dielectric layers stacked in a thickness direction and satisfying T/W>1.0 when it is defined that a width thereof is W and a thickness thereof is T, a plurality of first and second internal electrodes disposed in the ceramic body so as to face each other, having the dielectric layer interposed therebetween, and alternately exposed through both end surfaces of the ceramic body, and first and second external electrodes including head parts formed on both end surfaces of the ceramic body and two band parts connected to the head parts and formed on portions of upper and lower main surfaces of the ceramic body so as to be spaced apart from each other in a width direction, and electrically connected to the first and second internal electrodes, respectively.
Abstract:
A multilayer ceramic component is provided. The multilayer ceramic component includes a ceramic body including a plurality of ceramic laminates, each including a plurality of dielectric layers and a plurality of internal electrodes and having first and second surfaces opposing each other in a first direction, third and fourth surfaces opposing each other in a second direction, and fifth and sixth surfaces opposing each other in a third direction, and a plurality of external electrodes including base electrode layers disposed on outer surfaces of the ceramic body and respectively connected to the internal electrodes of the ceramic laminates, and resin electrode layers disposed on the base electrode layers to expose at least portions of end portions of the base electrode layers, respectively.
Abstract:
There are provided a chip electronic component including: a magnetic body including an insulating substrate and a conductive coil pattern which is disposed on at least one surface of the insulating substrate; and external electrodes disposed on both end portions of the magnetic body to be connected to end portions of the conductive coil pattern, wherein each of the external electrodes includes a first plating layer disposed on an end surface of the magnetic body to be connected to the conductive coil pattern and a conductive resin layer covering the first plating layer and extended to main surfaces of the magnetic body.
Abstract:
A multilayer ceramic electronic component includes a ceramic body including dielectric layers and internal electrodes and having first and second surfaces opposing each other in a first direction, third and fourth surfaces opposing each other in a second direction, and fifth and sixth surfaces opposing each other in a third direction, base electrode layers disposed on the ceramic body and including main portions connected to the internal electrodes and extension portions extending from the main portions, and resin electrode layers disposed on the base electrode layers while leaving end portions of the extension portions exposed. A width of the extension portion is narrower than a width of the outer surface of the ceramic body on which the extension portion is disposed, measured in a direction parallel to a width direction of the extension portion.
Abstract:
A multilayer ceramic electronic part includes a body portion including an internal electrode and a dielectric layer, a first electrode layer disposed on at least one surface of the body portion and electrically connected to the internal electrode, and a conductive resin layer disposed on the first electrode layer and including a first conductivity-type metal particle, a second conductivity-type metal, and a base resin. The second conductivity-type metal has a melting point lower than a curing temperature of the base resin.
Abstract:
There is provided a multilayer ceramic capacitor including a ceramic body including a plurality of dielectric layers and having first and second main surfaces opposing each other, first and second side surfaces opposing each other, and first and second end surfaces opposing each other, a plurality of internal electrodes having the dielectric layer interposed therebetween, electrode layers formed on the first and second end surfaces of the ceramic body and electrically connected to the plurality of internal electrodes, and an impact absorption layer formed on the electrode layer so that an edge thereof is exposed.
Abstract:
A multilayer ceramic electronic part includes a body portion including an internal electrode and a dielectric layer, a first electrode layer disposed on at least one surface of the body portion and electrically connected to the internal electrode, and a conductive resin layer disposed on the first electrode layer and including a first conductivity-type metal particle, a second conductivity-type metal, and a base resin. The second conductivity-type metal has a melting point lower than a curing temperature of the base resin.
Abstract:
A capacitor includes a capacitor body having upper and lower surfaces and end surfaces connecting the upper and lower surfaces; and an external electrode disposed on a surface of the capacitor body and having a first electrode layer, a second electrode layer, and a third electrode layer. The second electrode layer includes metal and resin and is interposed between the first electrode layer and the third electrode layer, and a portion of the second electrode layer covering the end surface of the capacitor body has a thickness less than that of a portion of the first electrode layer covering the end surface of the capacitor body.