Abstract:
A semiconductor package includes a first substrate that includes a first insulating layer, a ground pattern in the first insulating layer, and a first conductive pattern; a first semiconductor chip placed on an upper surface of the first substrate; a ball array structure that is placed on the upper surface of the first substrate along a perimeter of the first semiconductor chip and is electrically connected to the ground pattern; and a shielding structure placed on the upper surface of the first semiconductor chip and in contact with the upper surface of the ball array structure. The ball array structure has a closed loop shape, and includes a solder ball portion and a connecting portion that connects adjacent solder ball portions. A maximum width of the solder ball portion is greater than a width of the connecting portion in a direction perpendicular to an extension direction of the connecting portion.
Abstract:
A nanostructure semiconductor light emitting device includes a base layer, an insulating layer, and a plurality of light emitting nanostructures. The base layer includes a first conductivity type semiconductor. The insulating layer is disposed on the base layer and has a plurality of openings through which regions of the base layer are exposed. The light emitting nanostructures are respectively disposed on the exposed regions of the base layer and include a plurality of nanocores having a first conductivity type semiconductor and having side surfaces provided as the same crystal planes. The light emitting nanostructures include an active layer and a second conductivity type semiconductor layer sequentially disposed on surfaces of the nanocores. Upper surfaces of the nanocores are provided as portions of upper surfaces of the light emitting nanostructures, and the upper surfaces of the light emitting nanostructures are substantially planar with each other.
Abstract:
Provided is a bio-information measuring apparatus. According to an aspect, the bio-information measuring apparatus includes: an optical module comprising a light source configured to emit light onto or toward an object, and a detector configured to detect light reflected or scattered from the object; a pressure sensor configured to measure pressure between the optical module and the object; and a processor configured to restore a spectrum based on the detected reflected or scattered light, and to correct the restored spectrum based on the measured pressure.