Abstract:
The inventive concept provides apparatuses and methods for monitoring semiconductor fabrication processes in real time using polarized light. In some embodiments, the apparatus comprises a light source configured to generate light, a beam splitter configured to reflect the light toward the wafer being processed, an objective polarizer configured to polarize the light reflected toward the wafer and to allow light reflected by the wafer to pass therethrough, a blaze grating configured to separate light reflected by the wafer according to wavelength, an array detector configured to detect the separated light and an analyzer to analyze the three-dimensional profile of the structure/pattern being formed in the wafer.
Abstract:
A data storage device includes a first memory device configured to provide first read data in response to a first read command, a controller including a hardware filter configured to generate first hint information based on a result of comparison of the first read data with filtering condition data and a processor configured to determine whether the first read data is to be filtered based on the first hint information, selectively filter the first read data based on the filtering condition data based on the determination result, and generate first filtered data, and a second memory device configured to store the first filtered data. The controller communicates the first filtered data to a host.
Abstract:
The inventive concept provides apparatuses and methods for monitoring semiconductor fabrication processes in real time using polarized light. In some embodiments, the apparatus comprises a light source configured to generate light, a beam splitter configured to reflect the light toward the wafer being processed, an objective polarizer configured to polarize the light reflected toward the wafer and to allow light reflected by the wafer to pass therethrough, a blaze grating configured to separate light reflected by the wafer according to wavelength, an array detector configured to detect the separated light and an analyzer to analyze the three-dimensional profile of the structure/pattern being formed in the wafer.
Abstract:
A method of predicting a shape of a semiconductor device includes implementing a modeled semiconductor shape with respect to a designed semiconductor layout, extracting a plurality of samples by independently linearly combining process variables with respect to the modeled semiconductor shape; generating virtual spectrums with respect to ones of the extracted plurality of samples through optical analysis, indexing the virtual spectrums to produce indexed virtual spectrums, generating a shape prediction model by using the indexed virtual spectrums as an input and the modeled semiconductor shape as an output, and indexing a spectrum measured from a manufactured semiconductor device and inputting the spectrum to the shape prediction model to predict a shape of the manufactured semiconductor device.
Abstract:
A method for analyzing an object includes measuring a first reflectivity of light from a surface and measuring a second reflectivity of light from the object, after the object is formed on the surface. A variation between the first and second reflectivities is calculated, and the variation is transformed by a predetermined transform. A thickness of the object is determined based on the transformed variation.