Abstract:
An optical film including a polymer including a repeating unit A including a repeating unit represented by the following Chemical Formulas 1 to 3, or a combination thereof; and a repeating unit B derived from a monomer having an unsaturated bond copolymerizable with the repeating unit A, wherein the optical film has a short wavelength dispersion of an in-plane phase-difference value (Re) (450 nm/550 nm) ranging from about 0.81 to about 1.20, and a long wavelength dispersion of an in-plane phase-difference value (Re) (650 nm/550 nm) ranging from about 0.90 to about 1.18: wherein, in Chemical Formulas 1 to 3, the variables R1 to R21 are defined herein.
Abstract:
An optical film including a polymer including a repeating unit A including a repeating unit represented by the following Chemical Formulas 1 to 3, or a combination thereof; and a repeating unit B derived from a monomer having an unsaturated bond copolymerizable with the repeating unit A, wherein the optical film has a short wavelength dispersion of an in-plane phase-difference value (Re) (450 nm/550 nm) ranging from about 0.81 to about 1.20, and a long wavelength dispersion of an in-plane phase-difference value (Re) (650 nm/550 nm) ranging from about 0.90 to about 1.18: wherein, in Chemical Formulas 1 to 3, the variables R1 to R21 are defined herein.
Abstract:
An optical film includes: a polarization layer; a first phase retardation layer having an optic axis at an angle in a range from about 17 degrees to about 27 degrees or from about −27 degrees to about −17 degrees with respect to a transmission axis of the polarization layer; and a second phase retardation layer having an optic axis at an angle in a range from about 85 degrees to about 95 degrees with respect to the transmission axis of the polarization layer. The polarization layer, the first phase retardation layer, and the second phase retardation layer are deposited in sequence, the first phase retardation layer is a half-wave plate, the second phase retardation layer is a quarter-wave plate, and out-of-plane retardation values of the first phase retardation layer and the second phase retardation layer for incident light having the standard wavelength have opposite signs.
Abstract:
An optical film including a polarization layer, a first phase delay layer positioned on a side of the polarization layer and including a liquid crystal, and a second phase delay layer positioned on a side of the first phase delay layer, where the first phase delay layer has an optical axis defining an angle of about 17 degrees to about 27 degrees or about −27 degrees to about −17 degrees relative to a transmissive axis of the polarization layer, and the second phase delay layer has an optical axis defining an angle of about 85 degrees to about 95 degrees relative to the transmissive axis of the polarization layer.
Abstract:
Disclosed is a polymer comprising a repeating unit represented by Chemical Formula 1, or a polymer comprising a repeating unit represented by Chemical Formula 2: wherein R1, R2, x and y are as defined herein.
Abstract:
An embodiment of an optical film includes: a polarization layer; a first phase retardation layer; a second phase retardation layer; and a light blocking layer disposed between the first phase retardation layer and the second phase retardation layer and extending along a circumference of the second phase retardation layer, wherein the polarization layer is disposed on the first phase retardation, the first phase retardation layer is disposed on the second phase retardation layer, an in-plane retardation value of the first phase retardation layer at a standard wavelength of about 550 nanometers is in a range from about 240 nanometers to about 300 nanometers, and an in-plane retardation value of the second phase retardation layer at the standard wavelength is in a range from about 110 nanometers to about 160 nanometers.
Abstract:
An optical compensation film includes: a first layer having positive birefringence; a second layer on the first layer and having negative birefringence; and a third layer on the second layer and having positive birefringence. A retardation value of the optical compensation film for incident light having a wavelength of about 550 nm is about 135 nm to about 145 nm, and a ratio of a thickness of the first layer or of the third layer to a thickness of the second layer is about 1.1 to 2.2.
Abstract:
Disclosed are an optical structure, and a camera module and an electronic device including the same. The optical structure includes a transparent substrate; a first moisture-proof layer disposed on the transparent substrate and including a first organic material having moisture-proof properties; and a first near-infrared absorbing layer disposed between the transparent substrate and the first moisture-proof layer and including a copper complex, wherein the first organic material having moisture-proof properties has a water vapor transmission rate (WVTR) of less than or equal to about 100 g/m2/day measured at a thickness of 100 μm.
Abstract:
An optical film includes a polarizer, a uniaxially elongated film disposed on the polarizer, and a compensation film disposed on one side of the uniaxially elongated film. The polarizer includes a polymer having a glass transition temperature of greater than about 100° C. and including a structural unit derived from styrene or a styrene derivative. The compensation film has a refractive index satisfying Relationship Equations 1 and 2, the uniaxially elongated film has an in-plane retardation satisfying Relationship Equation 3 and a thickness retardation satisfying Relationship Equation 4, and the compensation film has an in-plane retardation satisfying Relationship Equation 5 and a thickness retardation satisfying Relationship Equation 6. A liquid crystal display including the optical film is also disclosed. Relationship Equations 1 to 6 are described in the detailed description.
Abstract:
A composition for a near-infrared light-absorbing film includes a binder and compounds represented by separate particular chemical formulae. A near-infrared light-absorbing film may include a near-infrared light-absorbing layer including a cured product of the composition. A camera device may include the near-infrared light-absorbing film, and an electronic device may include the camera device.