Abstract:
In one possible implementation, fresh hydrochloric acid or (partially) spent hydrochloric acid can be pressurized by a pressure source. The pressurized acid from the acid source is injected into a wellbore during an acidizing operation. In addition, a carbon dioxide source may be provided. Acid from the acid source is combined with carbon dioxide from the carbon dioxide source, and the combined acid and carbon dioxide, pressurized by the pressure source, are injected into the wellbore during the acidizing operation. A processor located at the earth's surface or downhole may be provided. The processor can monitor the relative proportions of carbon dioxide and acid in the acid/carbon dioxide combination, as well as the pressure of the acid/carbon dioxide combination at an injection site in the wellbore. Acidizing operation management decisions can be made based on the monitored relative proportions and/or the monitored pressure.
Abstract:
An acid source and a pressure source are provided. The acid may be fresh hydrochloric acid or (partially) spent hydrochloric acid. Pressurized acid from the acid source, pressurized by the pressure source, is injected into a wellbore during an acidizing operation. In addition, a carbon dioxide source may be provided. Acid from the acid source is combined with carbon dioxide from the carbon dioxide source, and the combined acid and carbon dioxide, pressurized by the pressure source, are injected into the wellbore during the acidizing operation. A processor located at the earth's surface or downhole may be provided. The processor can monitor the relative proportions of carbon dioxide and acid in the acid/carbon dioxide combination, as well as the pressure of the acid/carbon dioxide combination at an injection site in the wellbore. Acidizing operation management decisions can be made based on the monitored relative proportions and/or the monitored pressure.
Abstract:
In one embodiment, the current application discloses a method comprising: performing a computed tomography (CT) porosity scan on a core sample, the core sample comprising a portion of a formation of interest; in response to the CT porosity scan, interpreting a porosity profile of the core sample; and in response to the porosity profile, modeling a response of a formation of interest to a predetermined treatment to determine a reacted formation configuration, wherein the predetermined treatment comprises an acid fluid treatment schedule, and wherein the modeling further comprises modeling acid fluid flow through the formation of interest having the porosity profile, and wherein the modeling further comprises accounting for acid reaction products during the predetermined treatment and shut-in period.
Abstract:
Systems and methods using enhanced flow control devices are described. The flow control devices can be selectively closed completely or have its effective flow area reduced to restrict production (or injection) by use of a chemical trigger mechanism. In addition, some of the systems described herein deploy specific targeted chemical tracers, dissolvable in the unwanted production fluid (e.g. water or gas). These chemical tracers once dissolved will enter the production stream and be identified at the surface. The identification will determine which segment of the completion is producing the unwanted fluid. According to some embodiments, an appropriate chemical trigger is placed, for example, by pumping down through the tubing and utilizing intelligent completion valve to place the chemical, or by spotting with coiled tubing and bullhead to the formation, or by other methods of chemical placement. The chemical trigger will only trigger the active chemical in the appropriate flow control device. This chemical will then change state—dissolve, create thermal reaction, create a pressure swell or expand—which in turn allows a mechanical device to shift position such that a valve in the flow control device closes, or reduces its flow by restricting the flow area by swelling/expansion of the active chemical.
Abstract:
The subject disclosure relates to matrix acidizing. More specifically, systems and methods are described for estimating a diffusion coefficient for an acid fluid used to stimulate a subterranean reservoir wherein a spent acid is formulated that includes one or more by-products of the reaction between the fluid and rock. A rock sample, such as in the form of a rotating disk is exposed to spent acid under elevated pressure and temperature conditions while the fluid is sampled and analyzed. A diffusion coefficient for the spend acid is estimated.
Abstract:
In an embodiment a method is described which includes emplacing a sample within a measurement cell, wherein two or more electrodes are configured in the measurement cell; introducing a reactive fluid into the measurement cell; reacting the sample with the reactive fluid, wherein reacting the sample with the reactive fluid results in a change in an ion concentration in the reactive fluid; and measuring the resistivity of the reactive fluid using the two or more electrodes, wherein the resistivity is proportional to the ion concentration in the reactive fluid.
Abstract:
Described herein are methods for treating a subterranean formation penetrated by a wellbore with a retarded acidizing fluid containing an acid and an acid retarding agent, the concentrations of which are adjusted based on measured parameter values of the formation. Also described is a method for treating a subterranean formation by introducing an acid to the formation following the introduction of an acid retarding agent to the formation. Also described is a method for acid fracturing a subterranean formation including reducing the concentration of an acid retarding agent contained in a retarded acidizing fluid over the course of the acid fracturing operation.
Abstract:
A logging tool is disposed in a wellbore during an acidizing operation. The logging tool may be an acoustic tool, a resistivity tool, or a neutron tool. Measurements are made using the logging tool on a region of a formation penetrated by the wellbore and being subjected to the acidizing operation. A formation property is inferred at one or more depths of investigation within the region using the measurements, and acidizing operation management decisions are made based on the determined inferred property. The inferred property may also be simulated. A minimized difference between the inferred formation property and the corresponding simulated formation property is determined, and acidizing operation management decisions are made based on the determined difference. The inferred property may be acoustic velocity, conductivity peak observation time, near-to-far detector count ratio, or porosity. An acidizing operation management decision may be to maintain, increase, or decrease an acid injection rate.
Abstract:
In one embodiment, the current application discloses a method comprising: performing a computed tomography (CT) porosity scan on a core sample, the core sample comprising a portion of a formation of interest; in response to the CT porosity scan, interpreting a porosity profile of the core sample; and in response to the porosity profile, modeling a response of a formation of interest to a predetermined treatment to determine a reacted formation configuration, wherein the predetermined treatment comprises an acid fluid treatment schedule, and wherein the modeling further comprises modeling acid fluid flow through the formation of interest having the porosity profile, and wherein the modeling further comprises accounting for acid reaction products during the predetermined treatment and shut-in period.
Abstract:
Described herein are methods for treating a subterranean formation penetrated by a wellbore with a retarded acidizing fluid containing an acid and an acid retarding agent, the concentrations of which are adjusted based on measured parameter values of the formation. Also described is a method for treating a subterranean formation by introducing an acid to the formation following the introduction of an acid retarding agent to the formation. Also described is a method for acid fracturing a subterranean formation including reducing the concentration of an acid retarding agent contained in a retarded acidizing fluid over the course of the acid fracturing operation.