Abstract:
A driving circuit includes an amplification circuit configured to output an amplified modulation signal and a level shift circuit. The level shift circuit includes a second gate driver that outputs a third gate signal and a fourth gate signal, a third transistor that operates based on the third gate signal, and a fourth transistor that operates based on the fourth gate signal. The second gate driver outputs the third gate signal for controlling the third transistor to be conductive and the fourth gate signal for controlling the fourth transistor to be nonconductive in a second period in which a driving signal is fixed in a second potential that is higher than a first potential and lower than a third potential and the fourth gate signal for controlling the fourth transistor to be nonconductive.
Abstract:
A fluid jet device including a fluid chamber with variable capacity and a capacity varying section adapted to vary the capacity of the fluid chamber in response to supply of a drive signal. A drive waveform section making the capacity varying section operate so as to compress the capacity of the fluid chamber and a restoring drive waveform section making the capacity varying section operate to restore the capacity of the fluid chamber before compressing the capacity in a signal waveform. The drive signal supply section controls supply content of the drive signal to provide a restoring period adapted to restore a steady state of the fluid flowing toward an inside of the fluid chamber in a period from when the compressing drive waveform section in the drive signal is supplied to when a subsequent compressing drive waveform section is supplied.
Abstract:
A power generation unit includes a deforming member adapted to deform while switching a deformation direction, a piezoelectric device provided to the deforming member, a displacement detection section adapted to detect that the deforming member is displaced beyond a predetermined level, an inductor electrically connected to the piezoelectric device, a switch disposed between the piezoelectric device and the inductor, and a control section adapted to set the piezoelectric device and the inductor to an electrically conductive state via the switch if the displacement detection section detects that the deforming member is displaced beyond the predetermined level.
Abstract:
Operation of a digital power amplifier for power amplification of a modulated signal is stopped in a period in which a voltage value of a drive signal applied to a capacitive load is constant, to thereby suppress power loss. The power amplification is stopped either when half a period of time when the modulated signal in a first voltage state maintains the first voltage state elapses or when half a period of time when the modulated signal in a second voltage state which is lower in voltage than the first voltage state maintains the second voltage state elapses. Accordingly, when electric current does not flow in a inductor of a low pass filter, it is possible to stop the power amplification. Thus, it is possible to prevent generation of voltage fluctuation in the drive signal due to an electromotive force caused by a self-induction phenomenon of the inductor.
Abstract:
A liquid ejection device, includes: a drive waveform signal output circuit which outputs a drive waveform signal to serve as a reference for the drive signal; a modulator which pulse-modulates the drive waveform signal and thus generates a first modulated signal and a second modulated signal having a different phase from the first modulated signal within a range from greater than 90 degrees to smaller than 270 degrees; a first digital power amplifier; a second digital power amplifier a first low pass filter which performs low pass filtering of the first amplified digital signal and thus generates a first demodulated signal; and a second low pass filter which performs low pass filtering of the second amplified digital signal and thus generates a second demodulated signal; wherein the first demodulated signal and the second demodulated signal are combined and applied as the drive signal to the capacitive load.
Abstract:
A power generation unit includes a deforming member (a beam) adapted to deform while switching a deformation direction, a first piezoelectric device provided to the deforming member (the beam), a second piezoelectric device provided to the deforming member (the beam), an inductor electrically connected to the first piezoelectric device, a switch disposed between the first piezoelectric device and the inductor, and a control section adapted to detect a voltage generated in the second piezoelectric device, and if the voltage detected has a level one of equal to and higher than a predetermined level, electrically connect the first piezoelectric device and the inductor to each other using the switch.
Abstract:
A fluid ejection device includes: a modulator adapted to pulse-modulate a drive waveform signal forming a basis of a drive signal of an actuator to obtain a modulated signal; a digital power amplifier circuit adapted to power-amplify the modulated signal to obtain a power-amplified modulated signal; a low pass filter adapted to smooth the power-amplified modulated signal to obtain the drive signal; and a power amplification stopping section operating when holding a voltage of the actuator constant.
Abstract:
A liquid discharge apparatus in which a level shift circuit executes, one or a plurality of times according to a voltage value of a capacitor included in a bootstrap circuit detected by a voltage detection circuit, a second control of outputting a third gate signal for controlling a third transistor to be non-conductive and a fourth gate signal for controlling a fourth transistor to be conductive, and then, outputting the third gate signal for controlling the third transistor to be conductive and the fourth gate signal for controlling the fourth transistor to be non-conductive.
Abstract:
An amplifier circuit, a level shift circuit; and a demodulation circuit, in which in a second mode obtained by shifting a reference potential of the amplification modulation signal to a second potential having a potential higher than a first potential, the second gate driver included in the level shift circuit performs a constant voltage control that outputs a third gate signal controlling a third transistor to be conductive and a fourth gate signal controlling a fourth transistor to be non-conductive, and a charge control that outputs the third gate signal controlling the third transistor to be non-conductive and the fourth gate signal controlling the fourth transistor to be conductive, and then outputs the third gate signal controlling the third transistor to be conductive and the fourth gate signal controlling the fourth transistor to be non-conductive.
Abstract:
A level shift circuit that outputs a level shift amplification modulation signal obtained by shifting a potential of an amplification modulation signal output by an amplifier circuit is provided, a potential of a first voltage supplied to one end of a first transistor of the amplifier circuit is larger than a potential of a second voltage supplied to a bootstrap circuit which is a reference of a third voltage supplied to one end of a third transistor included in the level shift circuit, and a second gate driver included in the level shift circuit outputs a third gate signal that switches an operation of the third transistor and a fourth gate signal that switches an operation of a fourth transistor, in a period during which a potential of a drive signal is between the potential of the first voltage and the potential of the second voltage.