Abstract:
A fluid ejection device includes a fluid ejection unit that ejects a fluid, an ejection control unit that controls the ejection of the fluid from the fluid ejection unit, a fluid container that accommodates the fluid to be supplied to the fluid ejection unit, and a pressure adjustment unit that adjusts an inner pressure of the fluid container in such a manner that the inner pressure of the fluid container gets closer to a target pressure than a first threshold value for the inner pressure of the fluid container. When the inner pressure of the fluid container is closer to the target pressure than a second threshold value that is separated further from the target pressure than the first threshold value, the ejection control unit receives a demand for the ejection of the fluid.
Abstract:
A fluid ejection device includes a fluid accommodation portion having an outlet and a fluid pressing unit that causes the fluid to flow out of the fluid outlet through a channel. A fluid ejection unit ejects in a pulsed manner the fluid received from a fluid intake port connected to the channel. A pressure detection unit detects an inner pressure of the fluid accommodation portion. A press control unit controls the inner pressure of the fluid accommodation portion to approach a target pressure value when the channel is closed. A channel determination unit determines that the channel is not closed if a detected movement speed of the fluid pressing unit is a predetermined speed or greater when a predetermined amount of time has elapsed after a difference between the inner pressure of the fluid accommodation portion and the target pressure value becomes less than a predetermined value.
Abstract:
A fluid ejection device includes a fluid ejection unit that ejects a fluid and an ejection control unit that controls the ejection of the fluid. A fluid container accommodates the fluid supplied to the fluid ejection unit. A connection channel connects the fluid ejection unit and the fluid container. An opening and closing unit opens and closes the connection channel. A pressure adjustment unit controls the opening and closing unit and adjusts an inner pressure of the fluid container. The pressure adjustment unit increases the inner pressure higher than a predetermined pressure by instructing the opening and closing unit to close the connection channel and then instructing the opening and closing unit to open the connection channel after the inner pressure of the fluid container exceeds the predetermined pressure. The ejection control unit allows the fluid ejection unit to eject the fluid after the connection channel is opened.
Abstract:
A fluid ejection device includes a fluid container having a fluid accommodation portion that has formed therein a fluid outlet and accommodates a fluid. A fluid pressing unit presses the fluid accommodation portion to cause the fluid to flow out of the fluid outlet. Connection piping has an end that is connected to the fluid outlet. A fluid ejection unit has a fluid intake port connected to the other end of the connection piping, and ejects in a pulsed manner the fluid received from the fluid intake port. A pressure detection unit detects pressure of the fluid accommodation portion when the fluid pressing unit presses the fluid accommodation portion, and outputs a level of a detection signal corresponding to the pressure. A press control unit stops the fluid pressing unit from pressing the fluid accommodation portion when the pressure indicated by the detection signal is a predetermined value or higher.
Abstract:
A fluid ejection device includes a fluid ejection unit including a plurality of nozzles and configured to eject fluid from at least any one of the nozzles in a pulse-like manner according to a drive signal, a fluid supplying unit configured to supply the fluid to the fluid ejection unit, an ejecting-instruction input unit configured to receive an ejecting instruction input, a mode-selection input unit configured to receive an input of selection information for selecting any one of a first mode for ejecting the fluid using a first nozzle unit including at least one nozzle and a second mode for ejecting the fluid using a second nozzle unit including at least one nozzle, and a fluid-ejecting control unit configured to output, when receiving the ejecting instruction input, according to the selection information, the drive signal such that the fluid is ejected from the first nozzle unit or second nozzle unit.
Abstract:
A fluid ejection device includes: a fluid ejection unit that ejects a fluid in a pulsed manner; a fluid accommodation portion that accommodates the fluid at a predetermined pressure or higher; a fluid supply unit that supplies the fluid accommodated in the fluid accommodation portion to the fluid ejection unit; a connection channel that connects the fluid ejection unit and the fluid accommodation portion, and acts as a channel through which the fluid flows; an opening and closing unit that opens and closes the connection channel; and a control unit that sends an open signal for opening the connection channel to the opening and closing unit, and sends an ejection signal for ejecting the fluid to the fluid ejection unit. The control unit sends the ejection signal after a predetermined amount of time has elapsed from the sending of the open signal.
Abstract:
A fluid ejection device includes a fluid ejection unit that ejects a fluid and an ejection control unit that controls ejection of the fluid. A fluid container accommodates the fluid supplied to the fluid ejection unit. A pressure adjustment unit adjusts an inner pressure of the fluid container such that the inner pressure gets closer to a target pressure than a first threshold value. The ejection control unit has first and second ejection modes. In the first ejection mode, when the inner pressure is closer to the target pressure than a second threshold value separated from the target pressure farther than the first threshold value, the ejection control unit receives a demand for ejection of fluid. In the second ejection mode, even when the inner pressure is not closer to the target pressure than the second threshold value, the ejection control unit receives a demand for ejection of fluid.
Abstract:
A fluid ejection device includes a fluid container having a fluid accommodation portion that has formed therein a fluid outlet and accommodates a fluid. A fluid pressing unit presses the fluid accommodation portion to cause the fluid to flow out of the fluid outlet. Connection piping has an end that is connected to the fluid outlet. A fluid ejection unit has a fluid intake port connected to the other end of the connection piping, and ejects in a pulsed manner the fluid received from the fluid intake port. A pressure detection unit detects pressure of the fluid accommodation portion when the fluid pressing unit presses the fluid accommodation portion, and outputs a level of a detection signal corresponding to the pressure. A press control unit stops the fluid pressing unit from pressing the fluid accommodation portion when the pressure indicated by the detection signal is a predetermined value or higher.
Abstract:
A fluid ejection device includes a fluid storing unit and a fluid outlet. A fluid pressing unit presses the fluid storing unit and causes fluid to flow from the fluid outlet. A connection pipe has an end that is connected to the fluid outlet. A fluid ejection unit ejects the fluid, which is received from a fluid intake port to which the other end of the connection pipe is connected, in a pulse-like manner according to a drive signal generated by a fluid-ejecting control unit. An ejecting-instruction input unit receives a fluid ejecting instruction. If the pressure in the fluid storing unit is equal to or higher than an upper limit value in a range determined with reference to a target pressure value, the drive signal is not generated. When the pressure in the fluid storing unit is lower than the upper limit value, the drive signal is generated.
Abstract:
A state detection device includes an acquisition part that acquires an acceleration detection value from an acceleration sensor, and a judgment part that judges a running state or a walking state based on the acceleration detection value. The judgment part detects as to whether a positive/negative sign of the acceleration detection value in a first axis reversed in a predetermined judgment period, determines the running state when the sign reverses, and determines the walking state when the sign does not reverse.