Abstract:
An oscillator includes an oscillation source, multiple temperature control elements, and a controller adapted to perform control to suppress an increase in current consumed in one or more of the temperature control elements during at least part of a period from when operation of the oscillation source initiates to when the oscillation source reaches a specified temperature.
Abstract:
A vibrator element has a detection arm that performs a drive vibration in a Z-axis direction, and performs a detection vibration in an X-axis direction when an angular velocity is applied thereto The vibrator element also has first, second, third, and fourth electrode portions and first, second, third, and fourth ground electrode portions provided on a detection arm. Further, a signal generated between the first electrode portion and the first ground electrode portion and a signal generated between the second electrode portion and the second ground electrode portion are in opposite phase in a drive vibration and in phase in a detection vibration. Furthermore, a signal generated between the third electrode portion and the third ground electrode portion and a signal generated between the fourth electrode portion and the fourth ground electrode portion are in opposite phase in the drive vibration and in phase in the detection vibration.
Abstract:
An oscillator includes an oscillation source, multiple temperature control elements, and a controller adapted to perform control to suppress an increase in current consumed in one or more of the temperature control elements during at least part of a period from when operation of the oscillation source initiates to when the oscillation source reaches a specified temperature.
Abstract:
A vibrator element has a detection arm that performs a drive vibration in a Z-axis direction, and performs a detection vibration in an X-axis direction when an angular velocity is applied thereto The vibrator element also has first, second, third, and fourth electrode portions and first, second, third, and fourth ground electrode portions provided on a detection arm. Further, a signal generated between the first electrode portion and the first ground electrode portion and a signal generated between the second electrode portion and the second ground electrode portion are in opposite phase in a drive vibration and in phase in a detection vibration. Furthermore, a signal generated between the third electrode portion and the third ground electrode portion and a signal generated between the fourth electrode portion and the fourth ground electrode portion are in opposite phase in the drive vibration and in phase in the detection vibration.
Abstract:
A vibrating element includes a vibration portion including a first main surface, a second main surface, a first side surface, and a second side surface, and extending in a first direction. The vibration portion includes a first groove formed in the first main surface and a second groove formed in the second main surface, and in a plan view seen from a direction perpendicular to the first main surface, the first groove and the second groove are provided to shift in opposite directions from each other, in a second direction.
Abstract:
A vibrating element includes a vibrating arm for detection. An electrode is provided on the vibrating arm for detection. A wiring line is connected to the electrode. The wiring line is arranged on a piezoelectric body of a base portion. At least a part of the wiring line is an electrode for adjustment. The electrode for adjustment generates an electrical signal with an opposite phase to an output signal of leak vibration of the vibrating arm for detection.
Abstract:
A vibrating element as an element on which a base part, a supporting part extending from the base part, and adjustment electrodes as mass adjustment parts are provided and a semiconductor substrate as a circuit element are provided, and the adjustment electrodes are placed in locations not overlapping with the semiconductor substrate in a plan view, the supporting part and the semiconductor substrate are connected, and thereby, the vibrating element is mounted on the semiconductor substrate.
Abstract:
A vibrating reed includes a vibrating body (a base portion, a vibrating arm, and a detection arm) and a support portion that supports the vibrating body via a plate-like coupling portion. In both principal surfaces of the coupling portion, grooves (a first groove and a second groove) are disposed. The first groove arranged in one of the principal surfaces of the coupling portion and the second groove arranged in the other principal surface are arranged at positions different from each other in plan view.
Abstract:
A signal level conversion circuit 1 includes a first differential amplifier circuit 10 and a second differential amplifier circuit 20. The first differential amplifier circuit 10 multiplies a potential difference between a first input signal and a second input signal by G1 thereby providing an output signal. The second differential amplifier circuit 20 multiplies a potential difference between the output signal of the first differential amplifier circuit 10 and the second input signal by G2 thereby providing an output, where the two gains satisfy the relation of G1×G2
Abstract:
An angular velocity sensor includes a substrate, a detector including a movable detection electrode and a fixed detection electrode opposed to the movable detection electrode, and a driver adapted to drive the detector. The movable detection electrode is supported by a first spring that is elongated parallel to a Y axis from a first turned-back part, and a second spring that is elongated parallel to the Y axis from a second turned-back part. The first and second springs are fixed at first and second anchors. The first turned-back part is closer to the second spring than the first anchor. The detector includes a first surface opposed to the first spring, and a second surface disposed closer to the first spring than the first surface.