Abstract:
A semiconductor device includes first to third insulating layers and a transistor including a semiconductor layer, first to fourth conductive layers, and fourth to sixth insulating layers. The first conductive layer, the first insulating layer, the third conductive layer, the fifth insulating layer, the second insulating layer, the third insulating layer, and the second conductive layer overlap in this order. The first to third insulating layers and the second and third conductive layers include an opening reaching the first conductive layer. In the opening, the first insulating layer includes a protruding portion, and the fourth insulating layer is in contact with the top surface of the first insulating layer and side surfaces of the fifth insulating layer and the second insulating layer. The fifth insulating layer, an oxide of the third conductive layer, is in contact with top and side surfaces of the third conductive layer. The semiconductor layer is in contact with the top surfaces of the first and second conductive layers and a side surface of the fourth insulating layer. The sixth insulating layer is in contact with the top surface of the semiconductor layer. The fourth conductive layer is over and in contact with the sixth insulating layer to overlap with the opening.
Abstract:
A semiconductor device in which a decrease in the yield by electrostatic destruction can be prevented is provided. A scan line driver circuit for supplying a signal for selecting a plurality of pixels to a scan line includes a shift register for generating the signal. One conductive film functioning as respective gate electrodes of a plurality of transistors in the shift register is divided into a plurality of conductive films. The divided conductive films are electrically connected to each other by a conductive film which is formed in a layer different from the divided conductive films are formed. The plurality of transistors includes a transistor on an output side of the shift register.
Abstract:
A semiconductor device having favorable electrical characteristics is provided. A semiconductor device having stable electrical characteristics is provided. A highly reliable semiconductor device is provided. The semiconductor device includes a semiconductor layer, a first insulating layer, and a first conductive layer. The semiconductor layer includes an island-shaped top surface. The first insulating layer is provided in contact with a top surface and a side surface of the semiconductor layer. The first conductive layer is positioned over the first insulating layer and includes a portion overlapping with the semiconductor layer. In addition, the semiconductor layer includes a metal oxide, and the first insulating layer includes an oxide. The semiconductor layer includes a first region overlapping with the first conductive layer and a second region not overlapping with the first conductive layer. The first insulating layer includes a third region overlapping with the first conductive layer and a fourth region not overlapping with the first conductive layer. Furthermore, the second region and the fourth region contain phosphorus or boron.
Abstract:
A semiconductor device with high reliability is provided. The semiconductor device includes a first transistor, a second transistor, a capacitor, and first to fourth wirings. The first transistor includes a first gate and a second gate, and one of a source and a drain of the first transistor is connected to the first wiring and the second gate, and the other of the source and the drain is connected to one of a source and a drain of the second transistor and one electrode of the capacitor. A gate of the second transistor is connected to the other electrode of the capacitor, and the other of the source and the drain of the second transistor is electrically connected to the second wiring. The first wiring is supplied with a first potential, and the second wiring is supplied with a second potential and a third potential alternately. The third wiring is connected to the first gate and supplied with a first signal. The fourth wiring is connected to the gate of the second transistor and supplied with a second signal obtained by inverting the first signal.
Abstract:
A semiconductor device having favorable electrical characteristics is provided. A semiconductor device having stable electrical characteristics is provided. A highly reliable semiconductor device is provided. The semiconductor device includes a semiconductor layer, a first insulating layer, and a first conductive layer. The semiconductor layer includes an island-shaped top surface. The first insulating layer is provided in contact with a top surface and a side surface of the semiconductor layer. The first conductive layer is positioned over the first insulating layer and includes a portion overlapping with the semiconductor layer. In addition, the semiconductor layer includes a metal oxide, and the first insulating layer includes an oxide. The semiconductor layer includes a first region overlapping with the first conductive layer and a second region not overlapping with the first conductive layer. The first insulating layer includes a third region overlapping with the first conductive layer and a fourth region not overlapping with the first conductive layer. Furthermore, the second region and the fourth region contain phosphorus or boron.
Abstract:
A liquid crystal display device with a high aperture ratio is provided. A liquid crystal display device with low power consumption is provided. A display device includes a transistor and a capacitor. The transistor includes a first insulating layer, a first semiconductor layer in contact with the first insulating layer, a second insulating layer in contact with the first semiconductor layer, and a first conductive layer electrically connected to the first semiconductor layer via an opening portion provided in the second insulating layer. The capacitor includes a second conductive layer in contact with the first insulating layer, the second insulating layer in contact with the second conductive layer, and the first conductive layer in contact with the second insulating layer. The second conductive layer includes a composition similar to that of the first semiconductor layer. The first conductive layer and the second conductive layer are configured to transmit visible light.
Abstract:
A semiconductor device in which a decrease in the yield by electrostatic destruction can be prevented is provided. A scan line driver circuit for supplying a signal for selecting a plurality of pixels to a scan line includes a shift register for generating the signal. One conductive film functioning as respective gate electrodes of a plurality of transistors in the shift register is divided into a plurality of conductive films. The divided conductive films are electrically connected to each other by a conductive film which is formed in a layer different from the divided conductive films are formed. The plurality of transistors includes a transistor on an output side of the shift register.
Abstract:
A semiconductor device in which a decrease in the yield by electrostatic destruction can be prevented is provided. A scan line driver circuit for supplying a signal for selecting a plurality of pixels to a scan line includes a shift register for generating the signal. One conductive film functioning as respective gate electrodes of a plurality of transistors in the shift register is divided into a plurality of conductive films. The divided conductive films are electrically connected to each other by a conductive film which is formed in a layer different from the divided conductive films are formed. The plurality of transistors includes a transistor on an output side of the shift register.
Abstract:
A touch panel including an oxide semiconductor film having conductivity is provided. The touch panel includes a transistor, a second insulating film, and a touch sensor. The transistor includes a gate electrode; a gate insulating film; a first oxide semiconductor film; a source electrode and a drain electrode; a first insulating film; and a second oxide semiconductor film. The second insulating film is over the second oxide semiconductor film so that the second oxide semiconductor film is positioned between the first insulating film and the second insulating film. The touch sensor includes a first electrode and a second electrode. One of the first and second electrodes includes the second oxide semiconductor film.
Abstract:
A change in electrical characteristics is inhibited and reliability is improved in a semiconductor device including an oxide semiconductor film. The semiconductor device includes a gate electrode, a gate insulating film over the gate electrode, an oxide semiconductor film over the gate insulating film, and a pair of electrodes over the oxide semiconductor film. The oxide semiconductor film includes a channel region and n-type regions in contact with the pair of electrodes. The channel region has fewer oxygen vacancies than the n-type regions.