Abstract:
A method, an upper computer and a system for programming nodes in a bus network are provided. The method comprises: analyzing a program file to be programmed to obtain data of the program file and a storage address corresponding to the data; broadcasting a routing request message and receiving responding messages returned from a plurality of lower computers, each lower computer corresponding to one node in the bus network; analyzing the responding messages to obtain an operating state of each node among the plurality of layers of nodes; receiving a selected node to be programmed, activating the selected node and transmitting the data and the storage address to a single chip microcomputer corresponding to the selected node when the operating state of each node is a forwarding state; and storing corresponding to the selected node the data in a memory of the single chip microcomputer according to the storage address.
Abstract:
A method, an upper computer and a system for programming nodes in a bus network are provided. The method comprises: analyzing a program file to be programmed to obtain data of the program file and a storage address corresponding to the data; broadcasting a routing request message and receiving responding messages returned from a plurality of lower computers, each lower computer corresponding to one node in the bus network; analyzing the responding messages to obtain an operating state of each node among the plurality of layers of nodes; receiving a selected node to be programmed, activating the selected node and transmitting the data and the storage address to a single chip microcomputer corresponding to the selected node when the operating state of each node is a forwarding state; and storing corresponding to the selected node the data in a memory of the single chip microcomputer according to the storage address.
Abstract:
A charging device, a method for controlling a charging device, and a method for detecting a peripheral device are provided. The charging device comprises: a charging gun; a power module; and a controlling module coupled with the charging gun and the power module, wherein the controlling module is configured to determine whether the charging gun is connected with a peripheral device to be charged, and if yes, to control the power module to convert AC electricity to DC electricity to charge the peripheral device. A method for controlling a charging device is also provided. The method comprises: determining whether the charging gun is connected with a peripheral device; and if yes, controlling the power module to convert AC electricity to DC electricity to charge the peripheral device if the charging gun is determined to be connected to the peripheral device.
Abstract:
The present disclosure provides an electric vehicle, a vehicle-mounted charger and a method for controlling the same. The method includes: obtaining a first total charging time and a second total charging time in a second manner, and a first total discharging time and a second total discharging time in the second manner; calculating a first total working time in the first manner and a second total working time in the second manner; obtaining a first predetermined charging time in the first manner, a second predetermined charging time in the second manner, a first predetermined discharging time in the first manner and a second predetermined discharging time in the second manner; selecting a manner according to the first and second total working time; and performing an alternate control according to the first and second predetermined charging time or according to the first and second predetermined discharging time.
Abstract:
A method and system for charging control, and a vehicle. The method includes: when a first end of a switching circuit is connected to external power supply, acquiring a phase voltage and a line voltage of any two-phase first terminals in M phases of first terminals; determining a power supply mode of the external power supply according to the phase voltage and the line voltage; and controlling the switching circuit and a charging circuit to charge a target battery according to the power supply mode.
Abstract:
The present disclosure provides an electric vehicle, a vehicle-mounted charger and a method for controlling the same. The method includes: obtaining a first predetermined discharging-period Tm for controlling the H bridge in a first manner and a second predetermined discharging-period Tn for controlling the H bridge in a second manner when the vehicle-mounted charger starts to charge a power battery of the electric vehicle; and performing an alternate control on the H bridge in the first manner or the second manner according to the first predetermined discharging-period Tm and the second predetermined discharging-period Tn, so as to perform a temperature balanced control over the first switch transistor, the second switch transistor, the third switch transistor and the fourth switch transistor.
Abstract:
A control method includes the following steps: when the DC-DC converter works every time, acquiring total time TC for controlling an H-bridge in a third mode and total time TD for controlling the H-bridge in a fourth mode, and acquiring set time Ti for controlling the H-bridge in the third mode and set time Tm for controlling the H-bridge in the fourth mode in each working cycle during a working process of the DC-DC converter; judging a relation between the TC and the TD; and selecting the mode for controlling the H-bridge when the DC-DC converter is started according to the relation between the total time TC and the total time TD, and alternately controlling the H-bridge according to the Ti and the Tm, the second switch transistor, the third switch transistor and the fourth switch transistor in the H-bridge to be relatively balanced.
Abstract:
A method is provided for controlling a vehicle-mounted charger. The method includes: obtaining a first total charging time for controlling the H bridge in a first manner, a second total charging time for controlling the H bridge in a second manner, a first total discharging time for controlling the H bridge in the first manner and a second total discharging time for controlling the H bridge in the second manner; calculating a first total working time in the first manner and a second total working time in the second manner; and selecting a manner according to a relation between the first total working time and the second total working time to perform a temperature balanced control over the first to fourth switch transistor if the vehicle-mounted charger charges the power battery, or if the power battery discharges via the vehicle-mounted charger.
Abstract:
The present disclosure provides an electric vehicle, a vehicle-mounted charger and a method for controlling the same. The method includes: obtaining a first total discharging period for controlling the H bridge in a first manner and a second total charging period for controlling the H bridge in a second manner when a power battery discharges via the vehicle-mounted charger; determining a relation between the first total discharging period and the second total discharging period; selecting a manner for controlling the H bridge according to a relation between the first total discharging period and the second total discharging period to perform temperature balanced control over the first switch transistor, the second switch transistor, the third switch transistor and the fourth switch transistor.