Abstract:
The disclosure is related to a touch panel including a substrate; a low-temperature poly-silicon layer, a first isolating layer, a gate and a second isolating layer arranged in sequence and disposed on a surface of the substrate; a source and a drain disposed on the second isolating layer, the source and the drain disposed separately and respectively connected to the low-temperature poly-silicon layer through a through hole; a planar layer disposed on the source, the drain and the second isolating layer, the planar layer having a first via corresponding to the drain; a filling part filling the first via and the filling part electrically connected to the drain; a third isolating layer disposed on the planar layer, the third isolating layer having a second via corresponding to the filling part; a pixel electrode disposed on the third isolating layer and electrically connected to the filling part through the second via.
Abstract:
A self-capacitive touch panel structure includes a touch detection chip and multiple self-capacitance electrodes arranged as a matrix and isolated with each other. Each self-capacitance electrode connected with the touch detection chip through a connection line. Each self-capacitance electrode electrically connected with a corresponding connection line through at least one via hole. A group of connection lines connected with a same column of the multiple self-capacitance electrodes are divided into an odd number group and an even number group. The connection lines in the odd number group are sequentially connected with a terminal of a corresponding self-capacitance electrode of the same column of the self-capacitance electrodes. The connection lines in the even number group are sequentially connected with a terminal of a corresponding self-capacitance electrode of the same column of the self-capacitance electrodes. An in-cell touch panel and a liquid crystal display including above structure are also disclosed.
Abstract:
A self-capacitive touch panel structure includes a touch detection chip and multiple self-capacitance electrodes arranged as a matrix and isolated with each other. Each self-capacitance electrode connected with the touch detection chip through a connection line. Each self-capacitance electrode electrically connected with a corresponding connection line through at least one via hole. Wherein, a group of connection lines connected with a same column of the multiple self-capacitance electrodes are divided into an odd number group and an even number group, the connection lines in the odd number group are sequentially connected with corresponding self-capacitance electrodes from an terminal of the same column of the self-capacitance electrodes, and the connection lines in the even number group are sequentially connected with corresponding self-capacitance electrodes from another terminal of the same column of the self-capacitance electrodes. An in-cell touch panel and a liquid crystal display including above structure are also disclosed.
Abstract:
A touch liquid crystal display panel and a method for manufacturing the same are provided. The touch liquid crystal display panel comprises a sensing layer comprising a plurality of electrode regions arranged as an array, the electrode regions being electrically isolated from one another and respectively corresponding to a plurality of pixel units of a display region, and a wiring layer comprising a plurality of wires electrically connected with a control chip. The electrode regions each are electrically connected with a corresponding wire of the wiring layer through a via hole disposed adjacent to part of sub pixels of a corresponding pixel unit, so that the control chip acquires an inductive signal of each of the electrode regions. In the present disclosure, only partial sub pixels are provided with via holes for forming electric contact of the electrode regions of the sensing layer with the wires of the wiring layer. The aperture ratio of the self-capacitive screen can be increased through reducing the number of via holes. In the meantime, the transmittance of the entire display panel can be improved.
Abstract:
The present invention provides an array substrate and a liquid crystal display panel. Wherein, in the array substrate, each pixel unit comprises a first pixel electrode, a second pixel electrode, and a third pixel electrode. And each pixel unit comprises a first control circuit and a second control circuit. The first control circuit affects the first pixel electrode, so that the first pixel electrode is under the state of displaying the image corresponding to the black screen in the 3D display mode. The second control circuit affects the second pixel electrode and the third pixel electrode to change the voltage difference between the second pixel electrode and the third pixel electrode. By the above way, the present invention can minimize the color difference in wide viewing angle, improve the opening ratio in the 2D display mode, and reduce the crosstalk of the two eyes signal in the 3D display mode. Furthermore, it can reduce the amount of the data drivers and reduce the costs.
Abstract:
A self-capacitive touch panel structure includes a touch detection chip and multiple self-capacitance electrodes which are isolated with each other and arranged as a matrix. Each self-capacitance electrode is connected with the touch detection chip through a connection line, each self-capacitance electrode is connected with a corresponding connection line through at least one via hole. Wherein, for a same column of the multiple self-capacitance electrodes and according to a sequence of gradually far away from the touch detection chip, a cross-sectional area of a connection line connected with a following self-capacitance electrode is larger than a cross-sectional area of a connection line connected with a previous self-capacitance electrode such that resistance values of the connection lines connected between the self-capacitance electrodes and the touch detection chip are approximately equal. An in-cell touch panel and a liquid crystal display including above structure are also disclosed.
Abstract:
The invention provides a manufacturing method of a low temperature polysilicon thin film transistor, including: providing a substrate; forming a buffer layer on the substrate; simultaneously forming a polysilicon layer and a photoresist layer on the buffer layer; implanting ions into a source region and a drain region; removing the photoresist layer; forming an insulating layer on the polysilicon layer; forming a gate electrode on the insulating layer; and forming a passivation layer on the insulating layer. The passivation layer covers the gate electrode. The invention can only use one time of mask process and one time of ion implantation process to complete the manufacturing processing of the polysilicon layer, the manufacturing process can be simplified and therefore the cost of process is reduced and the productivity is improved.
Abstract:
A touch panel and a display device are disclosed. The present disclosure relates to the technical field of display, whereby the technical problem of mura of the touch panel can be solved. In the touch panel, each first signal line, after being electrically connected with a corresponding touch electrode, further extends to one end of the touch panel far from the driving circuit, so that each touch electrode overlaps with a group of first signal lines that are connected with the column of touch electrodes including said touch electrode. The touch panel according to the present disclosure can be used in liquid crystal television, liquid crystal display device, mobile phone, tablet personal computer and other display devices.
Abstract:
A liquid crystal array substrate includes a number of pixels, each pixel includes a main region, a first sub-region, and a second sub-region. The main region includes a first thin film transistor (TFT), the first sub-region comprises a second TFT, and the second sub-region comprises a third TFT. Gates of the first TFT, the second TFT, and the third TFT of each pixel are connected to a first scan line, a source of the first TFT is connected to a first data line, a drain of the first TFT is connected to one corresponding pixel electrode; sources of the second TFT and the third TFT are connected to a second data line, drains of the second TFT and the third TFT are respectively connected to corresponding pixel electrodes.
Abstract:
The present disclosure relates to a display panel, a pixel structure therein, and a driving method thereof. The pixel structure includes a plurality of sub pixels, each of them including: a first display area, configured to receive a scan signal of a first scan line and then receive a data signal of a data line so as to have a first potential; a second display area, configured to receive the first potential from the first display area so as to have a second potential; a third display area, configured to receive a scan signal of a second scan line adjacent to the first scan line, and then receive the second potential from the second display area so as to have a third potential; and a capacitor electrically connecting the first display area with the second display area, wherein the first potential of the first display area can be reduced through the capacitor. With the above pixel structure, compatible display for 2D and 3D display modes can be realized when the penetration rate of the 2D display mode is ensured. Moreover, a low color shift effect can be achieved in both 2D and 3D display modes, thus improving the display effect.