Abstract:
A device for handling of magnetic particles, in which liquids and a gel-like medium are loaded. The device is provided with: a first liquid containing part in which a first liquid is contained; a second liquid contained, part in which a second liquid is contained, a third liquid containing part in which a third liquid is contained, and a first gel-like medium containing part in which the first gel-like medium is contained. The first liquid containing part, the second liquid containing part and the third liquid containing part are connected to the first gel-like medium containing part. The first liquid, the second liquid and the third liquid are separated from each other by the first gel-like medium.
Abstract:
Disclosed is a particle manipulation method including steps of moving particles, which exist in a water-based liquid, into a gelled medium that is insoluble or hardly soluble in the water-based liquid in the water-based liquid, and moving the particles, which exist in the gelled medium, to the outside of the gelled medium. Preferably, the gelled medium is a gel that contains chemically crosslinking polymer. Preferably, the gelled medium has a consistency of 340 to 475. In one embodiment, the movement of the particles existing in the water-based liquid to the gelled medium and the movement of the particles existing inside the gelled medium to the water-based liquid are carried out inside a device, the device being loaded with a plurality of water-based liquids and a gelled medium interposed among the water-based liquids.
Abstract:
A manufacturing method of an operation pipe, which use a gel to perform operations such as separation, extraction, purification, elution, recovery, analysis and the like of target components that are biological components such as nucleic acids. More specifically, a manufacturing method of an operation pipe, with which it is possible to perform operations such as separation, extraction, purification, elution, recovery, analysis and the like of target components in a sealable pipe by operating magnetic particles in the pipe under a magnetic field from outside of the pipe.
Abstract:
A pretreatment kit includes a container (10) for particle manipulation, nucleic acid capture particles (70) capable of selectively binding to nucleic acid, aqueous-phase separation medium (21, 22, 23), a plurality of kinds of aqueous liquids (35, 31, 32, 38), and a nucleic acid for individual identification. The nucleic acid for individual identification is contained in at least one of the plurality of kinds of aqueous liquids or is bound onto the surfaces of the nucleic acid capture particles. The base sequence of the nucleic acid for individual identification contains an identification sequence including a base sequence noncomplementary to the nucleic acids contained in the biological sample. The pretreatment kit is used for separating nucleic acids from biological samples that contains nucleic acids and contaminants.
Abstract:
A device for manipulating magnetic particles includes a gelled medium layer and liquid layers alternately stacked in a tubular container along a longitudinal direction of the container. A magnetic particle movement portion for moving magnetic particles exists along an inner wall surface of the container, and the magnetic particle movement portion extends along the longitudinal direction of the container. At a portion where the gelled medium layer is loaded, the cross-sectional shape of the container inner wall in a plane perpendicular to the longitudinal direction of the container is non-circular, and the shape of the magnetic particle movement portion in the cross section is a curved shape or an angular shape.
Abstract:
A pretreatment kit includes a container (10) for particle manipulation, nucleic acid capture particles (70) capable of selectively binding to nucleic acid, aqueous-phase separation medium (21, 22, 23), a plurality of kinds of aqueous liquids (35, 31, 32, 38), and a nucleic acid for individual identification. The nucleic acid for individual identification is contained in at least one of the plurality of kinds of aqueous liquids or is bound onto the surfaces of the nucleic acid capture particles. The base sequence of the nucleic acid for individual identification contains an identification sequence including a base sequence noncomplementary to the nucleic acids contained in the biological sample. The pretreatment kit is used for separating nucleic acids from biological samples that contains nucleic acids and contaminants.
Abstract:
An operation pipe and a device equipped with the operation pipe, which use a gel to perform operations such as separation, extraction, purification, elution, recovery, analysis and the like of target components that are biological components such as nucleic acids. More specifically, an operation pipe and a device, with which it is possible to perform operations such as separation, extraction, purification, elution, recovery, analysis and the like of target components in a sealable pipe by operating magnetic particles in the pipe under a magnetic field from outside of the pipe.
Abstract:
To provide a device for operating magnetic particles capable of treating large quantity, and retaining a gel-like medium layer stably, a vessel is formed so that an area perpendicular to a longitudinal direction in a large-diameter part packed with a liquid layer is larger than an area perpendicular to the longitudinal direction in the small-diameter part packed with a gel-like medium layer. Therefore, in the vessel, it is possible to reduce the diameter of the small-diameter part while keeping the capacity of the large-diameter part large. As a result, in the vessel, it is possible to treat large quantity in the liquid layer, and it is possible to retain the gel-like medium layer stably.
Abstract:
A magnetic particle manipulation method for magnetic particle comprises the steps of; subjecting magnetic particles and a magnetic solid having a larger particle diameter than said magnetic particles to existing together in a liquid layer, and moving said magnetic solid and said magnetic particles in said liquid layer by a magnetic field manipulation. According to one aspect of the present invention; a manipulation method for magnetic particles comprising the steps of; moving magnetic particles in a first liquid layer into a gelled medium layer by a magnetic field manipulation in a device, wherein gelled medium layers and liquid layers are in-place alternately in a container, moving said magnetic particles present in the gelled medium into a second liquid layer by the magnetic field manipulation; and moving said magnetic particles along with said magnetic solid in the second liquid layer.
Abstract:
A purpose of the present invention is to suppress reduction in recovery rate of a target component due to a gel adhering to an inner wall surface of a treatment liquid layer. After passing magnetic particles through a gel layer, when moving the magnetic particles in the treatment liquid layer adjacent to the gel layer, the magnetic force source is automatically operated in a longitudinal direction of a tubular container so that the magnetic particles do not enter a range of a certain distance from the gel layer through which the magnetic particles have passed.