Abstract:
A field flow fractionation apparatus includes a separation channel provided with an inlet port and an outlet port at both ends and forming a space through which a carrier fluid flows between the inlet port and the outlet port, a separation membrane which is a wall surface that defines the separation channel and is parallel to a channel flow in which a carrier fluid flows in the separation channel from the inlet port toward the outlet port, and has a property of permeating the carrier fluid and not permeating particles to be separated, and a discharge port that discharges the carrier fluid having permeated through the separation membrane to outside. At least a part of the surface of the separation membrane is an ion exchangeable region in which a functional group having ion exchangeability is modified.
Abstract:
The suppressor system is provided with: a suppressor which has an eluent flow path and a suppression solution flow path, the eluent flow path and the suppression solution flow path being separated from each other by an ion exchange membrane; a circulation flow path which connects the inlet and the outlet of the suppression solution flow path of the suppressor, and circulates a suppression solution; an ion exchange resin column which is provided on the circulation flow path, and is equipped with a resin accommodation unit through which the suppression solution flowing out of the suppressor is passed, an acidic or alkaline ion exchange resin being accommodated in the resin accommodation unit; and a life detector which determines the life of the ion exchange resin in the ion exchange resin column.
Abstract:
A field-flow fractionation device includes a separation channel, a carrier fluid supplier, a separation membrane, a waste liquid chamber, a cross-flow flow rate adjuster, and a carrier fluid adder. The carrier fluid adder is configured to add, to a flow of a carrier fluid having passed through the separation membrane, a flow of another carrier fluid at a carrier fluid adding position set on an upstream side of the cross-flow flow rate adjuster so that the flow rate of the carrier fluid flowing into the cross-flow flow rate adjuster is larger than the flow rate of the carrier fluid having passed through the separation membrane.
Abstract:
A concentrator includes a casing, a separation membrane that sections an inner space of the casing to form a flow path in the casing, a first supplier that supplies a first liquid from a first position of the casing to the flow path such that the first liquid flows along the separation membrane in a first direction, a second supplier that supplies a second liquid from a second position of the casing to the flow path such that the second liquid flows along the separation membrane in a second direction opposite to the first direction, and a third supplier that supplies a third liquid including a target component having a size that does not allow permeation of the target component through the separation membrane from a third position of the casing to the flow path.
Abstract:
The present invention provides a method for hydrophobization of a hydrophilic material, the method including introducing a hydrophobic group into a hydroxyl group (—OH group) on a surface of the hydrophilic material. A method for hydrophobization of a hydrophilic material, the method comprising reacting a hydrophilic material to be hydrophobized with a hydrophobic group-containing silylating agent in presence of an amino acid as a reaction accelerator, to introduce a hydrophobic group-containing silyl group to a surface of the hydrophilic material. A hydrophobized silica gel column filler is produced by using the method. Further, a hydrophobized silica gel column is produced by filling a column with the hydrophobized silica gel column filler.
Abstract:
A magnetic particle manipulation method for magnetic particle comprises the steps of; subjecting magnetic particles and a magnetic solid having a larger particle diameter than said magnetic particles to existing together in a liquid layer, and moving said magnetic solid and said magnetic particles in said liquid layer by a magnetic field manipulation. According to one aspect of the present invention; a manipulation method for magnetic particles comprising the steps of; moving magnetic particles in a first liquid layer into a gelled medium layer by a magnetic field manipulation in a device, wherein gelled medium layers and liquid layers are in-place alternately in a container, moving said magnetic particles present in the gelled medium into a second liquid layer by the magnetic field manipulation; and moving said magnetic particles along with said magnetic solid in the second liquid layer.
Abstract:
Field flow fractionation device includes a channel switching unit for switching the connection of a second carrier fluid supply unit to any one of the second inlet port of an upper separation cell, the first inlet port of a lower separation cell, or the second inlet port of a lower separation cell. Furthermore, the second carrier fluid supply unit is connected to the second inlet port of an upper separation cell during the process of focusing to generate flow of carrier fluid counter to the flow of carrier fluid from the first inlet port within the upper separation cell, whereas the second carrier fluid supply unit is connected to the first inlet port or the second inlet port of a lower separation cell after conclusion of focusing in the upper separation cell.
Abstract:
A separation cell includes a separation channel forming chip and a discharge channel forming chip. The separation cell includes a separation channel forming plate that is provided on the separation channel forming chip and has a flat surface defining a separation channel having a longitudinal direction, a discharge channel forming plate that is provided on the discharge channel forming chip and has a flat surface defining a discharge channel extending along a longitudinal direction of the separation channel, a separation membrane that is provided on the flat surface defining the separation channel on the separation channel forming chip, and is for selectively allowing a carrier fluid to permeate, a porous support plate and is attached to block an opening of the discharge channel, and a positioning structure for positioning the separation channel forming chip and the discharge channel forming chip in a specific geometrical relationship with respect to each other.
Abstract:
A flow-type field-flow fractionation apparatus 1 includes a first heater 14 and a second heater 16. The first heater 14 heats a carrier fluid between a first pump 12 and a separation cell 3. The second heater 16 heats a focus fluid between a second pump 15 and the separation cell 3. Thus, the carrier fluid heated by the first heater 14 is sent by the first pump 12 and flows into the separation cell 3, and the focus fluid heated by the second heater 16 is sent by the second pump 15 and flows into the separation cell 3. This can stabilize temperatures of the carrier fluid and the focus fluid flowing into the separation cell 3. Then, when an analysis is performed using the flow-type field-flow fractionation apparatus 1, the analysis can be performed with high reproducibility.
Abstract:
Provided is a field-flow-fractionation apparatus that is configured to supply a carrier fluid to a waste fluid chamber through a fluid supply flow path at a flow rate higher than a set flow rate of a flow rate adjusting part at a timing between an end of analysis of a sample and a start of analysis of a subsequent sample, thereby forming a flow of the carrier fluid from the waste fluid chamber to the separation channel. Accordingly, the sample adhering to a separation membrane is separated from the separation membrane and is discharged from the outlet port.