Abstract:
An electronic device includes a semiconductor memory including material layers each including one or more low-resistance areas and one or more high-resistance areas, insulating layers stacked alternately with the material layers and including protrusions extending more than the material layers, conductive pillars passing through the insulating layers and the low-resistance areas, conductive layers located between the protrusions, and variable resistance layers interposed between the low-resistance areas and the conductive layers.
Abstract:
A memory device includes first to nth decks respectively coupled to first to nth row lines which are stacked over a substrate in a vertical direction perpendicular to a surface of the substrate, n being a positive integer, a first connection structure extending from the substrate in the vertical direction to be coupled to the first row line, even-numbered connection structures extending from the substrate in the vertical direction and respectively coupled to ends of even-numbered row lines among the second to nth row lines, and odd-numbered connection structures extending from the substrate in the vertical direction and respectively coupled to ends of odd-numbered row lines among the second to nth row lines. The even-numbered connection structures are spaced apart from the odd-numbered connection structures with the first row line and the first connection structure that are interposed between the even-numbered connection structures and the odd-numbered connection structures.
Abstract:
A variable resistive memory device includes a memory cell, a first circuit, and a second circuit. The memory cell is connected between a word line and a bit line. The first circuit provides the bit line with a first pulse voltage based on at least one enable signal. The second circuit provides the word line with a second pulse voltage based on the enable signal. The first circuit generates the first pulse voltage increased in steps from an initial voltage level to a target voltage level.
Abstract:
A manufacturing method may include: forming first memory stack lines extending in a first direction; forming first access lines on the first memory stack lines to extend in a second direction intersecting the first direction, each first access line being electrically conductive to provide an electrical connection; forming a second memory stack on the first access lines; and forming first trenches extending between the first access lines to separate the second memory stack into second memory stack lines extending in the second direction, and to separate the first memory stack lines into first memory cells.
Abstract:
A switching device includes a first electrode and a second electrode, and an electrolyte layer disposed between the first electrode and the second electrode. The electrolyte layer includes a first layer charged with negative charges and a second layer charged with positive charges.
Abstract:
A semiconductor apparatus includes a first memory die; a second memory die; and a processor configured to provide an external command, an external start address and an external end address which are associated with a read operation, to the first memory die, and provide an external command, an external start address and an external end address, which are associated with a write operation, to the second memory die, in the case where data stored in the first memory die is to be transferred to and stored in the second memory die.
Abstract:
A memory system includes a memory device and a memory controller. The memory device includes a plurality of memory dies having different page sizes. The memory controller generates a plurality of chip selection signals for activating the plurality of memory dies based on the reordering number of requests received from a processor.
Abstract:
An electronic device includes a semiconductor memory including material layers each including one or more low-resistance areas and one or more high-resistance areas, insulating layers stacked alternately with the material layers and including protrusions extending more than the material layers, conductive pillars passing through the insulating layers and the low-resistance areas, conductive layers located between the protrusions, and variable resistance layers interposed between the low-resistance areas and the conductive layers.
Abstract:
Disclosed is a semiconductor device including an ECC circuit for improving error correction capability. A semiconductor device in accordance with an embodiment of the present invention includes a memory region configured to include a plurality of banks and a redundancy region within each of the banks and an error check and correction (ECC) region configured to detect an address of the memory region at which an error has occurred and correct a defect of the memory region by replacing the address at which the error has occurred with a redundancy line of the redundancy region based on address information.
Abstract:
A memory system includes a processor and a plurality of memories. The processor includes a plurality of ECCs having different error restoration rates with each other, and a plurality of memories is coupled to the plurality of ECCs, respectively, according to distances from the processor.