Abstract:
Methods of fabricating a semiconductor structure include bonding a carrier wafer over a substrate, removing at least a portion of the substrate, transmitting laser radiation through the carrier wafer and weakening a bond between the substrate and the carrier wafer, and separating the carrier wafer from the substrate. Other methods include forming circuits over a substrate, forming trenches in the substrate to define unsingulated semiconductor dies, bonding a carrier substrate over the unsingulated semiconductor dies, transmitting laser radiation through the carrier substrate and weakening a bond between the unsingulated semiconductor dies and the carrier substrate, and separating the carrier substrate from the unsingulated semiconductor dies. Some methods include thinning at least a portion of the substrate, leaving the plurality of unsingulated semiconductor dies bonded to the carrier substrate.
Abstract:
The disclosure relates to a process for locating devices, the process comprising the following steps: a) providing a carrier substrate comprising: a device layer; and alignment marks; b) providing a donor substrate; c) forming a weak zone in the donor substrate, the weak zone delimiting a useful layer; d) assembling the donor substrate and the carrier substrate; and e) fracturing the donor substrate in the weak zone so as to transfer the useful layer to the device layer; wherein the alignment marks are placed in cavities formed in the device layer, the cavities having an aperture flush with the free surface of the device layer.
Abstract:
Methods are used to form semiconductor devices that include an integrated circuit and a microelectromechanical system (MEMS) device operatively coupled with the integrated circuit. At least a portion of an integrated circuit may be fabricated on a surface of a substrate, and a MEMS device may be formed over the at least a portion of the integrated circuit. The MEMS device may be operatively coupled with the integrated circuit. Semiconductor structures and electronic devices including such structures are formed using such methods.
Abstract:
Methods of forming semiconductor devices comprising integrated circuits and microelectromechanical system (MEMS) devices operatively coupled with the integrated circuits involve the formation of an electrically conductive via extending at least partially through a substrate from a first major surface of the substrate toward an opposing second major surface of the substrate, and the fabrication of at least a portion of an integrated circuit on the first major surface of the substrate. A MEMS device is provided on the second major surface of the substrate, and the MEMS device is operatively coupled with the integrated circuit using the at least one electrically conductive via. Structures and devices are fabricated using such methods.
Abstract:
The disclosure relates to a process for locating devices, the process comprising the following steps: a) providing a carrier substrate comprising: a device layer; and alignment marks; b) providing a donor substrate; c) forming a weak zone in the donor substrate, the weak zone delimiting a useful layer; d) assembling the donor substrate and the carrier substrate; and e) fracturing the donor substrate in the weak zone so as to transfer the useful layer to the device layer; wherein the alignment marks are placed in cavities formed in the device layer, the cavities having an aperture flush with the free surface of the device layer.
Abstract:
Methods are used to form semiconductor devices that include an integrated circuit and a microelectromechanical system (MEMS) device operatively coupled with the integrated circuit. At least a portion of an integrated circuit may be fabricated on a surface of a substrate, and a MEMS device may be formed over the at least a portion of the integrated circuit. The MEMS device may be operatively coupled with the integrated circuit. Semiconductor structures and electronic devices including such structures are formed using such methods.
Abstract:
Methods of forming semiconductor devices comprising integrated circuits and microelectromechanical system (MEMS) devices operatively coupled with the integrated circuits involve the formation of an electrically conductive via extending at least partially through a substrate from a first major surface of the substrate toward an opposing second major surface of the substrate, and the fabrication of at least a portion of an integrated circuit on the first major surface of the substrate. A MEMS device is provided on the second major surface of the substrate, and the MEMS device is operatively coupled with the integrated circuit using the at least one electrically conductive via. Structures and devices are fabricated using such methods.
Abstract:
The disclosure relates to a process for locating devices, the process comprising the following steps: a) providing a carrier substrate comprising: a device layer; and alignment marks; b) providing a donor substrate; c) forming a weak zone in the donor substrate, the weak zone delimiting a useful layer; d) assembling the donor substrate and the carrier substrate; and e) fracturing the donor substrate in the weak zone so as to transfer the useful layer to the device layer; wherein the alignment marks are placed in cavities formed in the device layer, the cavities having an aperture flush with the free surface of the device layer.
Abstract:
Methods of fabricating a semiconductor structure include bonding a carrier wafer over a substrate, removing at least a portion of the substrate, transmitting laser radiation through the carrier wafer and weakening a bond between the substrate and the carrier wafer, and separating the carrier wafer from the substrate. Other methods include forming circuits over a substrate, forming trenches in the substrate to define unsingulated semiconductor dies, bonding a carrier substrate over the unsingulated semiconductor dies, transmitting laser radiation through the carrier substrate and weakening a bond between the unsingulated semiconductor dies and the carrier substrate, and separating the carrier substrate from the unsingulated semiconductor dies. Some methods include thinning at least a portion of the substrate, leaving the plurality of unsingulated semiconductor dies bonded to the carrier substrate.