Abstract:
Substrates for microelectronic radiofrequency devices may include a substrate comprising a semiconductor material. Trenches may be located in an upper surface of the substrate, at least some of the trenches including a filler material located within the respective trench. A resistivity of the filler material may be 10 kOhms·cm or greater. A piezoelectric material may be located on or above the upper surface of the substrate. Methods of making substrates for microelectronic radiofrequency devices may involve forming trenches in an upper surface of a substrate including a semiconductor material. A filler material may be placed in at least some of the trenches, and a piezoelectric material may be placed on or above the upper surface of the substrate.
Abstract:
The present invention relates to a heterostructure, in particular, a piezoelectric structure, comprising a cover layer, in particular, a layer of piezoelectric material, the material of the cover layer having a first coefficient of thermal expansion, assembled to a support substrate, the support substrate having a second coefficient of thermal expansion substantially different from the first coefficient of thermal expansion, at an interface wherein the cover layer comprises at least a recess extending from the interface into the cover layer, and its method of fabrication.
Abstract:
A method for manufacturing a structure comprising a first substrate comprising at least one electronic component likely to be damaged by a temperature higher than 400° C. and a semiconductor layer extending on the first substrate comprises: (a) providing a first bonding metal layer on the first substrate, (b) providing a second substrate comprising successively: a semiconductor base substrate, a stack of a plurality of semiconductor epitaxial layers, a layer of SixGe1-x, with 0≤x≤1 being located at the surface of said stack opposite to the base substrate, and a second bonding metal layer, (c) bonding the first substrate and the second substrate through the first and second bonding metal layers at a temperature lower than or equal to 400° C., and (d) removing a part of the second substrate so as to transfer the layer of SixGe1-x on the first substrate using a selective etching process.
Abstract:
The present invention relates to a heterostructure, in particular, a piezoelectric structure, comprising a cover layer, in particular, a layer of piezoelectric material, the material of the cover layer having a first coefficient of thermal expansion, assembled to a support substrate, the support substrate having a second coefficient of thermal expansion substantially different from the first coefficient of thermal expansion, at an interface wherein the cover layer comprises at least a recess extending from the interface into the cover layer, and its method of fabrication.
Abstract:
The disclosure relates to a process for locating devices, the process comprising the following steps: a) providing a carrier substrate comprising: a device layer; and alignment marks; b) providing a donor substrate; c) forming a weak zone in the donor substrate, the weak zone delimiting a useful layer; d) assembling the donor substrate and the carrier substrate; and e) fracturing the donor substrate in the weak zone so as to transfer the useful layer to the device layer; wherein the alignment marks are placed in cavities formed in the device layer, the cavities having an aperture flush with the free surface of the device layer.
Abstract:
A method comprising the following steps: providing a support substrate and a donor substrate, forming an embrittlement region in the donor substrate so as to delimit a first portion and a second portion on either side of the embrittlement region, assembling the donor substrate on the support substrate, fracturing the donor substrate along the embrittlement region. In addition, the method comprises a step consisting of forming a compressive stress layer in the donor substrate so as to delimit a so-called confinement region interposed between the compressive stress layer and the embrittlement region.
Abstract:
The invention relates to a process for stabilizing a bonding interface, located within a structure for applications in the fields of electronics, optics and/or optoelectronics and that comprises an oxide layer buried between an active layer and a receiver substrate, the bonding interface having been obtained by molecular adhesion. In accordance with the invention, the process further comprises irradiating this structure with a light energy flux provided by a laser, so that the flux, directed toward the structure, is absorbed by the energy conversion layer and converted to heat in this layer, and in that this heat diffuses into the structure toward the bonding interface, so as to thus stabilize the bonding interface.
Abstract:
Methods of transferring a layer of semiconductor material from a first donor structure to a second structure include forming recesses in the donor structure, implanting ions into the donor structure to form a generally planar, inhomogeneous weakened zone therein, and providing material within the recesses. The first donor structure may be bonded to a second structure, and the first donor structure may be fractured along the generally planar weakened zone, leaving the layer of semiconductor material bonded to the second structure. Semiconductor devices may be fabricated by forming active device structures on the transferred layer of semiconductor material. Semiconductor structures are fabricated using the described methods.
Abstract:
Methods of transferring a layer of semiconductor material from a first donor structure to a second structure include forming recesses in the donor structure, implanting ions into the donor structure to form a generally planar, inhomogeneous weakened zone therein, and providing material within the recesses. The first donor structure may be bonded to a second structure, and the first donor structure may be fractured along the generally planar weakened zone, leaving the layer of semiconductor material bonded to the second structure. Semiconductor devices may be fabricated by forming active device structures on the transferred layer of semiconductor material. Semiconductor structures are fabricated using the described methods.
Abstract:
A method of producing a composite structure comprising a thin layer of monocrystalline silicon carbide arranged on a carrier substrate of silicon carbide comprises: a) a step of provision of an initial substrate of monocrystalline silicon carbide, b) a step of epitaxial growth of a donor layer of monocrystalline silicon carbide on the initial substrate, to form a donor substrate, c) a step of ion implantation of light species into the donor layer, to form a buried brittle plane delimiting the thin layer, d) a step of formation of a carrier substrate of silicon carbide on the free surface of the donor layer, comprising a deposition at a temperature of between 400° C. and 1100° C., e) a step of separation along the buried brittle plane, to form the composite structure and the remainder of the donor substrate, and f) a step of chemical-mechanical treatment(s) of the composite structure.