Abstract:
Embodiments of the invention relate to a process for fabricating a silicon-on-insulator structure comprising the following steps: providing a donor substrate and a support substrate, only one of the substrates being covered with an oxide layer; forming, in the donor substrate, a weak zone; plasma activating the oxide layer; bonding the donor substrate to the support substrate in a partial vacuum; implementing a bond-strengthening anneal at a temperature of 350° C. or less causing the donor substrate to cleave along the weak zone; and carrying out a heat treatment at a temperature above 900° C. A transition from the temperature of the bond-strengthening anneal to the temperature of the heat treatment may be achieved at a ramp rate above 10° C./s.
Abstract:
A manufacturing process for a semiconductor-on-insulator structure having reduced electrical losses and which includes a support substrate made of silicon, an oxide layer and a thin layer of semiconductor material, and a polycrystalline silicon layer interleaved between the support substrate and the oxide layer. The process includes a treatment capable of conferring high resistivity to the support substrate prior to formation of the polycrystalline silicon layer, and then conducting at least one long thermal stabilization on the structure at a temperature not exceeding 950° C. for at least 10 minutes.
Abstract:
The invention relates to a method for transferring a layer from a donor substrate onto a handle substrate wherein, after detachment, the remainder of the donor substrate is reused. To get rid of undesired protruding edge regions that are due to the chamfered geometry of the substrates, the invention proposes to carry out an additional etching process before detachment occurs.
Abstract:
A method for fabricating a silicon-on-insulator structure includes forming a first oxide layer on a silicon donor substrate, forming a second oxide layer on a supporting substrate, and forming a weakened zone in the donor substrate. The donor substrate is bonded to the supporting substrate by establishing direct contact between the first oxide layer on the silicon donor substrate and the second oxide layer on the supporting substrate and establishing a direct oxide-to-oxide bond therebetween. The donor substrate is split along the weakened zone to form a silicon-on-insulator structure, and the silicon-on-insulator structure is subjected to two successive rapid thermal annealing processes at temperatures T1 and T2, respectively, wherein T1 is less than or equal to T2, T1 is between 1200° C. and 1300° C., T2 is between 1240° C. and 1300° C., and when T1 is below 1240° C., then T2 is above 1240° C.
Abstract:
The invention relates to a method for transferring a layer from a donor substrate onto a handle substrate wherein, after detachment, the remainder of the donor substrate is reused. To get rid of undesired protruding edge regions which are due to the chamfered geometry of the substrates, the invention proposes to carry out an additional etching process before detachment occurs.
Abstract:
A method for fabricating a silicon-on-insulator structure includes forming a first oxide layer on a silicon donor substrate, forming a second oxide layer on a supporting substrate, and forming a weakened zone in the donor substrate. The donor substrate is bonded to the supporting substrate by establishing direct contact between the first oxide layer on the silicon donor substrate and the second oxide layer on the supporting substrate and establishing a direct oxide-to-oxide bond therebetween. The donor substrate is split along the weakened zone to form a silicon-on-insulator structure, and the silicon-on-insulator structure is subjected to two successive rapid thermal annealing processes at temperatures T1 and T2 respectively, wherein T1 is less than or equal to T2, T1 is between 1200° C. and 1300° C., T2 is between 1240° C. and 1300° C., and when T1 is below 1240° C., then T2 is above 1240° C.
Abstract:
Embodiments of to invention relate to a process for fabricating a silicon-on-insulator structure comprising the following steps: providing a donor substrate and a support substrate, only one of the substrates being covered with an oxide layer; forming, in the donor substrate, a weak zone; plasma activating the oxide layer; bonding the donor substrate to the support substrate in a partial vacuum; implementing a bond-strengthening anneal at a temperature of 350° C. or less causing the donor substrate to cleave along the weak zone; and carrying out a heat treatment at a temperature above 900° C. A transition from the temperature of the bond-strengthening anneal to the temperature of the heat treatment may be achieved at a ramp rate above 10° C./s.