Abstract:
A substrate for applications in the fields of radiofrequency electronics and microelectronics, comprises: a base substrate; a single carbon layer positioned on and directly in contact with the base substrate, with the carbon layer having a thickness ranging from 1 nm to 5 nm; an insulator layer positioned on the carbon layer; and a device layer positioned on the insulator layer. The disclosure also relates to a process for manufacturing such a substrate
Abstract:
A support for a semiconductor structure includes a base substrate, a first silicon dioxide insulating layer positioned on the base substrate and having a thickness greater than 20 nm, and a charge trapping layer having a resistivity higher than 1000 ohm·cm and a thickness greater than 5 microns positioned on the first insulating layer.
Abstract:
A support for a semiconductor structure includes a base substrate, a first silicon dioxide insulating layer positioned on the base substrate and having a thickness greater than 20 nm, and a charge trapping layer having a resistivity higher than 1000 ohm·cm and a thickness greater than 5 microns positioned on the first insulating layer.
Abstract:
A support for a semiconductor structure includes a base substrate, a first silicon dioxide insulating layer positioned on the base substrate and having a thickness greater than 20 nm, and a charge trapping layer having a resistivity higher than 1000 ohm·cm and a thickness greater than 5 microns positioned on the first insulating layer.
Abstract:
The invention concerns a method of testing a semiconductor-on-insulator type structure comprising a support substrate, a dielectric layer having a thickness of less than 50 nm and a semiconductor layer, the structure comprising a bonding interface between the dielectric layer and the support substrate or the semiconductor layer or inside the dielectric layer, characterized in that it comprises measuring the charge to breakdown (QBD) of the dielectric layer and in that information is deduced from the measurement relating to the hydrogen concentration in the layer and/or at the bonding interface. The invention also concerns a method of fabricating a batch of semiconductor-on-insulator type structures including carrying out the test on a sample structure from the batch.
Abstract:
This method for fabricating a structure comprising, in succession, a support substrate, a dielectric layer, an active layer, a separator layer of polycrystalline silicon, comprising the steps of: a) providing a donor substrate, b) forming an embrittlement area in the donor substrate, c) providing the support structure, d) forming the separator layer on the support substrate, e) forming the dielectric layer, f) assembling the donor substrate and the support substrate, g) fracturing the donor substrate along the embrittlement area, h) subjecting the structure to a strengthening annealing of at least 10 minutes, the fabrication method being noteworthy in that step d) is executed in such a way that the polycrystalline silicon of the separator layer exhibits an entirely random grain orientation, and in that the strengthening annealing is executed at a temperature strictly greater than 950° C. and less than 1200° C.
Abstract:
A manufacturing process for a semiconductor-on-insulator structure having reduced electrical losses and which includes a support substrate made of silicon, an oxide layer and a thin layer of semiconductor material, and a polycrystalline silicon layer interleaved between the support substrate and the oxide layer. The process includes a treatment capable of conferring high resistivity to the support substrate prior to formation of the polycrystalline silicon layer, and then conducting at least one long thermal stabilization on the structure at a temperature not exceeding 950° C. for at least 10 minutes.
Abstract:
The invention concerns a method of testing a semiconductor on insulator type structure comprising a support substrate, a dielectric layer having a thickness of less than 50 nm and a semiconductor layer, the structure comprising a bonding interface between the dielectric layer and the support substrate or the semiconductor layer or inside the dielectric layer, characterized in that it comprises measuring the charge to breakdown (QBD) of the dielectric layer and in that information is deduced from the measurement relating to the hydrogen concentration in the layer and/or at the bonding interface. The invention also concerns a method of fabricating a batch of semiconductor on insulator type structures including carrying out the test on a sample structure from the batch.
Abstract:
A method for fabricating a structure comprising, in succession, a support substrate, a dielectric layer, an active layer, a separator layer of polycrystalline silicon, comprising the steps of: a) providing a donor substrate, b) forming an embrittlement area in the donor substrate, c) providing the support structure, d) forming the separator layer on the support substrate, e) forming the dielectric layer, f) assembling the donor substrate and the support substrate, g) fracturing the donor substrate along the embrittlement area, h) subjecting the structure to a strengthening annealing of at least 10 minutes, the fabrication method being noteworthy in that step d) is executed in such a way that the polycrystalline silicon of the separator layer exhibits an entirely random grain orientation, and in that the strengthening annealing is executed at a temperature strictly greater than 950° C. and less than 1200° C.
Abstract:
A manufacturing process for a semiconductor-on-insulator structure having reduced electrical losses and which includes a support substrate made of silicon, an oxide layer and a thin layer of semiconductor material, and a polycrystalline silicon layer interleaved between the support substrate and the oxide layer. The process includes a treatment capable of conferring high resistivity to the support substrate prior to formation of the polycrystalline silicon layer, and then conducting at least one long thermal stabilization on the structure at a temperature not exceeding 950° C. for at least 10 minutes.