摘要:
Semiconductor devices having a high-temperature barrier layer between a III-V material and an underlying substrate are disclosed. The high-temperature barrier layer can minimize or prevent diffusion of arsenic and phosphorous from an overlying layer into the underlying substrate. Dilute nitride-containing multijunction photovoltaic cells incorporating a high-temperature barrier layer exhibit high efficiency.
摘要:
A lattice-matched solar cell having a dilute nitride-based sub-cell has exponential doping to thereby control current-carrying capacity of the solar cell. Specifically a solar cell with at least one dilute nitride sub-cell that has a variably doped base or emitter is disclosed. In one embodiment, a lattice matched multi junction solar cell has an upper sub-cell, a middle sub-cell and a lower dilute nitride sub-cell, the lower dilute nitride sub-cell having doping in the base and/or the emitter that is at least partially exponentially doped so as to improve its solar cell performance characteristics. In construction, the dilute nitride sub-cell may have the lowest bandgap and be lattice matched to a substrate, the middle cell typically has a higher bandgap than the dilute nitride sub-cell while it is lattice matched to the dilute nitride sub-cell.
摘要:
An alloy composition for a subcell of a solar cell is provided that has a bandgap of at least 0.9 eV, namely, Ga1-xInxNyAs1-y-zSbz with a low antimony (Sb) content and with enhanced indium (In) content and enhanced nitrogen (N) content, achieving substantial lattice matching to GaAs and Ge substrates and providing both high short circuit currents and high open circuit voltages in GaInNAsSb subcells for multijunction solar cells. The composition ranges for Ga1-xInxNyAs1-y-zSbz are 0.07≦x≦0.18, 0.025≦y≦0.04 and 0.001≦z≦0.03.
摘要:
An alloy composition for a subcell of a solar cell is provided that has a bandgap of at least 0.9 eV, namely, Ga1-xInxNyAs1-y-zSbz with a low antimony (Sb) content and with enhanced indium (In) content and enhanced nitrogen (N) content, achieving substantial lattice matching to GaAs and Ge substrates and providing both high short circuit currents and high open circuit voltages in GaInNAsSb subcells for multijunction solar cells. The composition ranges for Ga1-xInxNyAs1-y-zSbz are 0.07≦x≦0.18, 0.025≦y≦0.04 and 0.001≦z≦0.03.
摘要:
An alloy composition for a subcell of a solar cell is provided that has a bandgap of at least 0.9 eV, namely, Ga1-xInxNyAs1-y-zSbz with a low antimony (Sb) content and with enhanced indium (In) content and enhanced nitrogen (N) content, achieving substantial lattice matching to GaAs and Ge substrates and providing both high short circuit currents and high open circuit voltages in GaInNAsSb subcells for multijunction solar cells. The composition ranges for Ga1-xInxNyAs1-y-zSbz are 0.07≧x≧0.18, 0.025≧y≧0.04 and 0.001≧z≧0.03.
摘要:
Dilute nitride subcells with graded doping are disclosed. Dilute nitride subcells having graded doping display improved efficiency, short circuit current density, and open circuit voltage.
摘要:
An alloy composition for a subcell of a solar cell is provided that has a bandgap of at least 0.9 eV, namely, Ga1−xInxNyAs1-y-zSbz with a low antimony (Sb) content and with enhanced indium (In) content and enhanced nitrogen (N) content, achieving substantial lattice matching to GaAs and Ge substrates and providing both high short circuit currents and high open circuit voltages in GaInNAsSb subcells for multijunction solar cells. The composition ranges for Ga1−xInxNyAs1-y-zSbz are 0.07≦x≦0.18, 0.025≦y≦0.04 and 0.001≦z≦0.03.
摘要翻译:提供了具有至少0.9eV的带隙,即具有低锑(Sb)含量和增强的铟(In)含量和增强氮的Ga1-xInxNyAs1-y-zSbz的太阳能电池的子电池的合金组合物 (N)含量,实现了与GaAs和Ge衬底的实质晶格匹配,并在GaInNASSb子电池中为多结太阳能电池提供高短路电流和高开路电压。 Ga1-xInxNyAs1-y-zSbz的组成范围为0.07 @ x @ 0.18,0.025 @ y @ 0.04和0.001 @ z @ 0.03。
摘要:
Dilute nitride optical absorber materials having graded doping profiles are disclosed. The materials can be used in photodetectors and photovoltaic cells. Dilute nitride subcells having graded doping display improved efficiency, short circuit current density, and open circuit voltage.
摘要:
Multijunction photovoltaic cells having at least three subcells are disclosed, in which at least one of the subcells comprises a base layer formed of GaInNAsSb. The GaInNAsSb subcells exhibit high internal quantum efficiencies over a broad range of irradiance energies.
摘要:
Semiconductor devices and methods of fabricating semiconductor devices having a dilute nitride layer and at least one semiconductor material overlying the dilute nitride layer are disclosed. Hybrid epitaxial growth and the use of aluminum barrier layers to minimize hydrogen diffusion into the dilute nitride layer are used to fabricate high-efficiency multijunction solar cells.