Abstract:
Provided is an information processing apparatus that carries out a process of deriving a head related transfer function. The information processing apparatus includes a detection unit that detects a position of a head of a user, a storage unit that stores a head related transfer function of the user, a determination unit that determines a position of a sound source for measuring the head related transfer function of the user based on the position of the head detected by the detection unit and information stored in the storage unit, a control unit that controls the sound source to output measurement signal sound from the position determined by the determination unit, and a calculation unit that calculates the head related transfer function of the user based on collected sound data obtained by collecting, at the position of the head, the measurement signal sound output from the sound source.
Abstract:
According to the present disclosure, a sound output device includes a sound acquisition part that acquires a sound signal generated from an ambient sound, a reverb process part that performs a reverb process on the sound signal, and a sound output part that outputs a sound generated from the sound signal subjected to the reverb process, to a vicinity of an ear of a listener. This configuration allows a listener to hear sound acquired in real time to which desired reverberation is added.
Abstract:
There is provided a mobile object including an imaging unit configured to capture a perimeter of the mobile object, a speaker configured to be capable of controlling directivity, a determination unit configured to determine whether the mobile object is in a driving mode, and a speaker control unit configured to control the speaker in the driving mode in a manner that predetermined audio is output toward a warning target that is recognized based on a captured image captured by the imaging unit, and to control the speaker in a non-driving mode in a manner that the predetermined audio is output in a non-directional way.
Abstract:
Provided is a sound output device worn on an ear of a listener and used, and having listening characteristics of an ambient sound in a wearing state. A sound output device 100 includes a sound generating portion 110 that generates a sound, a sound guiding portion 120 that takes in the sound generated in the sound generating portion 110 from one end 121, and a holding portion 130 that holds the sound guiding portion 120 in the vicinity of the other end 122. The holding portion 130 is engaged with an intertragic notch, and supports the sound guiding portion 120 such that a sound output hole of the other end 122 of the sound guiding portion 120 to face a depth side of an ear canal. Even in a state where the listener wears the sound output device 100, the sound output device 100 does not block an ear cavity of the listener, and the listener can listen to the ambient sound.
Abstract:
Provided is a sound output device worn on an ear of a listener and used, and having listening characteristics of an ambient sound in a wearing state. A sound output device 100 includes a sound generating portion 110 that generates a sound, a sound guiding portion 120 that takes in the sound generated in the sound generating portion 110 from one end 121, and a holding portion 130 that holds the sound guiding portion 120 in the vicinity of the other end 122. The holding portion 130 is engaged with an intertragic notch, and supports the sound guiding portion 120 such that a sound output hole of the other end 122 of the sound guiding portion 120 to face a depth side of an ear canal. Even in a state where the listener wears the sound output device 100, the sound output device 100 does not block an ear cavity of the listener, and the listener can listen to the ambient sound.
Abstract:
Disclosed is a signal processing apparatus including a surrounding sound signal acquisition unit, a NC (Noise Canceling) signal generation part, a cooped-up feeling elimination signal generation part, and an addition part. The surrounding sound signal acquisition unit is configured to collect a surrounding sound to generate a surrounding sound signal. The NC signal generation part is configured to generate a noise canceling signal from the surrounding sound signal. The cooped-up feeling elimination signal generation part is configured to generate a cooped-up feeling elimination signal from the surrounding sound signal. The addition part is configured to add together the generated noise canceling signal and the cooped-up feeling elimination signal at a prescribed ratio.
Abstract:
There is provided a mobile object including an input detection unit configured to detect an input from an outside, an acquisition unit configured to acquire environmental information detected by a sensor in a remote location, in accordance with a content of detection performed by the input detection unit, and a control unit configured to control an actuator other than a driving actuator in accordance with the environmental information acquired by the acquisition unit, the driving actuator relating to movement of the mobile object.
Abstract:
There is provided an information processing apparatus including a storage controller configured to perform control in a manner that a log of a user is stored in a storage, a determination part configured to determine whether a position of the user is within a set area, and an erasure controller configured to substantially erase, when the determination part determines that the position of the user is not within the set area, at least data capable of identifying the user individually among the log of the user stored in the storage.
Abstract:
There is provided a storage control apparatus including a detection section which detects a body sound inside a body cavity, and outputs the body sound as an audio signal, and a storage control section which performs control in a manner that the audio signal output from the detection section is stored.
Abstract:
Provided is the signal processing device including: a signal analyzing unit configured to analyze a second audio signal based on a first audio signal which is input and a sound collected through a microphone; a cancellation processing unit configured to generate a cancellation signal for canceling the second audio signal; and a parameter generating unit configured to generate a control parameter used in the cancellation processing unit based on a result of analysis performed by the signal analyzing unit.