Abstract:
A new approach is disclosed concerning offset cancellation methods in analog to digital converters and analog to digital converters implementing the same. Such approach allows to efficiently cancel offset drifts in analog to digital converters.
Abstract:
A differential output stage of an amplification device, for driving a load, comprises a first and a second differential output stage portion. The first differential output stage portion comprises: a first and a second output circuit; a first driving circuit comprising a first biasing circuit; a second driving circuit comprising a second biasing circuit. The first differential output stage portion comprises: a third output circuit connected between a first node of said first biasing circuit and a first differential output terminal, having a third driving terminal connected to a first driving terminal; a fourth output circuit connected between a first node of the second biasing circuit and the first differential output terminal, having a fourth driving terminal connected to a second driving terminal.
Abstract:
A new approach is disclosed concerning offset cancellation methods in analog to digital converters and analog to digital converters implementing the same. Such approach allows to efficiently cancel offset drifts in analog to digital converters.
Abstract:
A voltage level shifting device for driving a capacitive load has an input terminal for receiving a first input signal switchable between a first logic state corresponding to a first reference voltage and a second logic state corresponding to a second reference voltage, and an output terminal for supplying an output signal switchable between a first logic state corresponding to a third reference voltage and a second logic state corresponding to a fourth reference voltage. The device also has a first electronic circuit that is activated following a commutation of the first input signal from the first reference voltage to the second reference voltage for fixing the output terminal to the fourth reference voltage. The device further has a second electronic circuit that is activated following a commutation of the first input signal from the second reference voltage to the first reference voltage.