Abstract:
A cell detection device and a cell detection method is provided with which it is possible to efficiently acquire images of cells to be measured. Cell detection device comprises flow cell through which a measurement specimen that contains particles is caused to flow, particle detector for detecting the particles in the measurement specimen supplied to flow cell, particle sorter for sorting particles that satisfy a detection condition and other particles on the basis of the result of detection performed by particle detector, specimen supply part for supplying, to flow cell, an image-capture specimen that includes detection-condition-satisfying particles that have been sorted by particle sorter, and particle-image-capture part for capturing images of the particles in the sorted image-capture specimen supplied to flow cell.
Abstract:
The present invention relates to polynucleotide markers and protein markers for detecting human follicular helper T cells. The present invention also relates to methods for detecting human follicular helper T cells using the markers.
Abstract:
Disclosed is a method for measuring an immunostimulatory response of an immune cell, including (i) bringing a measurement target immune cell into contact with an immunostimulator, (ii) forming a contact surface with a substance different from the measurement target immune cell on the measurement target immune cell, (iii) bringing the measurement target immune cell into contact with a capturing body that binds to a surface antigen on the contact surface and is capable of generating an optical signal, (iv) detecting the optical signal generated from the capturing body, and (v) determining whether or not the measurement target immune cell from which the contact surface has been eliminated before detecting the optical signal has an immunostimulatory response, based on the detected optical signal.
Abstract:
Disclosed is a method for analyzing immune cells, comprising the steps of mixing whole blood containing immune cells with an immunostimulatory factor in vitro and labeling target molecules of the immune cells, and a step of acquiring information on localization of the target molecules on the immune cells by detecting the label.
Abstract:
The present invention provides a method for determining a success or failure of a measurement of a target particle contained in a measurement sample. The method includes: detecting the target particle and other particle other than the target particle in the measurement sample; and determining the success or failure of the measurement of the target particle based on at least a detection result of the other particle.
Abstract:
A method of determining a quality of a cell separation, according to an aspect, includes: separating, by running a specimen containing a first particle and a second particle in a flow path, the specimen to a first specimen containing the first particle and a second specimen containing the second particle, based on a difference in magnitude of a force exerted on each particle contained in the specimen; measuring first information on an amount of the first specimen and second information on an amount of the second specimen; and determining a quality of the separating based on the first information and the second information.
Abstract:
A cell detection device and a cell detection method is provided with which it is possible to efficiently acquire images of cells to be measured. Cell detection device comprises flow cell through which a measurement specimen that contains particles is caused to flow, particle detector for detecting the particles in the measurement specimen supplied to flow cell, particle sorter for sorting particles that satisfy a detection condition and other particles on the basis of the result of detection performed by particle detector, specimen supply part for supplying, to flow cell, an image-capture specimen that includes detection-condition-satisfying particles that have been sorted by particle sorter, and particle-image-capture part for capturing images of the particles in the sorted image-capture specimen supplied to flow cell.
Abstract:
A cell detection method and a cell detection system capable of performing target cell detection satisfactorily without interference and reducing the time required for detection of target cells are provided. The cell detection method includes a separation step of step S1 to obtain a sample containing target cells by removing at least a part of the non-target cells from a biological sample including target cells and non-target cells based on a difference in forces acting on target cells and non-target cells; a concentration step of step S3 of obtaining a measurement sample having a target cell concentration increased from the sample containing target cells; a detection of step S4 of detecting target cells by subjecting the measurement sample to an imaging flow cytometer.
Abstract:
A particle imaging apparatus comprises a flow path comprising a first flow path section, a second flow path section connected downstream of the first flow path section, and a third flow path section that is branched from the first flow path section, a particle detection unit comprising a light source and a light detector, a particle sorting unit configured to adjust a flow direction of the particle, and a particle imaging unit configured to take an image of a particle that flows in the second flow path section. The flow path is structured such that a cross-sectional area of the second flow path section is greater than a cross-sectional area of the first flow path section. The first flow path section and the second flow path section are disposed so as to be linearly aligned.
Abstract:
Disclosed is a cell selection method including a sample preparation step of preparing a sample by performing staining of nucleic acid in each of cells by a first fluorescent dye; and hybridization with respect to an evaluation target region in DNA in each cell by an evaluation probe including a second fluorescent dye; a light receiving step of applying light to the sample and receiving fluorescence from the first fluorescent dye and fluorescence from the second fluorescent dye; and a selection step of selecting an analysis target cell on the basis of intensity of the fluorescence from the first fluorescent dye and intensity of the fluorescence from the second fluorescent dye, wherein the first fluorescent dye is a dye that emits fluorescence having a first wavelength, and the second fluorescent dye is a dye that emits fluorescence having a second wavelength different from the first wavelength.