摘要:
The dense accumulation of hole carriers can be obtained over a wide range of a semiconductor region in a floating state formed within a body region of an IGBT. An n type semiconductor region (52) whose potential is floating is formed within a p− type body region (28). The n type semiconductor region (52) is isolated from an n+ type emitter region (32) and an n− type drift region (26) by the body region (28). Furthermore, a second electrode (62) is formed, so as to oppose to at least a part of the semiconductor region (52) via an insulator film (64). The second electrode (62) does not oppose to the emitter region (32).
摘要:
The dense accumulation of hole carriers can be obtained over a wide range of a semiconductor region in a floating state formed within a body region of an IGBT. An n type semiconductor region (52) whose potential is floating is formed within a p− type body region (28). The n type semiconductor region (52) is isolated from an n+ type emitter region (32) and an n− type drift region (26) by the body region (28). Furthermore, a second electrode (62) is formed, so as to oppose to at least a part of the semiconductor region (52) via an insulator film (64). The second electrode (62) does not oppose to the emitter region (32).
摘要:
The present invention provides a technique for accumulating minority carriers in the body region, that is, the intermediate region interposed between the top region and the deep region, and thus increasing the concentration of minority carriers in the intermediate region. A semiconductor device has a top region (34) of a second conductivity type, a deep region (26) of the second conductivity type, and an intermediate region (28) of a first conductivity type for isolating the top region and the deep region. The semiconductor device further has a trench gate (32) facing a portion of the intermediate region via an insulating layer (33). The portion facing the trench gate isolates the top region and the deep region. The trench gate extends along a longitudinal direction. The width of the trench gate is not uniform along the longitudinal direction; instead the width of the trench gate varies along the longitudinal direction.
摘要:
The present invention relates to a technique for reducing the on-voltage of the semiconductor device by increasing the concentration of minority carriers in the deep region (26) and the intermediate region (28). A semiconductor device according to the invention comprises an electrode, a top region (36) of a second conductivity type connected to the electrode, a deep region of the second conductivity type, and an intermediate region of a first conductivity type connected to the electrode. A portion of the intermediate region isolates the top region and the deep region. The semiconductor device further comprises a gate electrode (32) facing the portion of the intermediate region via an insulating layer. The portion facing the gate electrode isolates the top region and the deep region. The semiconductor device according to the invention further comprises a barrier region (40) that is formed within the intermediate region and/or the top region.
摘要:
The present invention relates to a technique for reducing the on-voltage of the semiconductor device by increasing the concentration of minority carriers in the deep region (26) and the intermediate region (28). A semiconductor device according to the invention comprises an electrode, a top region (36) of a second conductivity type connected to the electrode, a deep region of the second conductivity type, and an intermediate region of a first conductivity type connected to the electrode. A portion of the intermediate region isolates the top region and the deep region. The semiconductor device further comprises a gate electrode (32) facing the portion of the intermediate region via an insulating layer. The portion facing the gate electrode isolates the top region and the deep region. The semiconductor device according to the invention further comprises a barrier region (40) that is formed within the intermediate region and/or the top region.
摘要:
The present invention provides a technique for accumulating minority carriers in the body region, that is, the intermediate region interposed between the top region and the deep region, and thus increasing the concentration of minority carriers in the intermediate region. A semiconductor device has a top region (34) of a second conductivity type, a deep region (26) of the second conductivity type, and an intermediate region (28) of a first conductivity type for isolating the top region and the deep region. The semiconductor device further has a trench gate (32) facing a portion of the intermediate region via an insulating layer (33). The portion facing the trench gate isolates the top region and the deep region. The trench gate extends along a longitudinal direction. The width of the trench gate is not uniform along the longitudinal direction; instead the width of the trench gate varies along the longitudinal direction.
摘要:
The present invention comprises side members (15), which are vehicular skeleton members of a hybrid vehicle (10); a front cross member (18) for connecting the two side members (15); spring supports (16) connected to the side members (15); an auxiliary battery arranged further towards the vehicle front relative to a PCU (13) and attached to the front cross member (18) via a support platform (23) and a securing piece (22); a radiator (17) attached to the front cross member (18); a motor case (12) and an engine (11) connected to the vehicular skeleton member via an engine mount; an axle (25) extending from the motor case (12); and a PCU (13) connected to the motor case (12) via a guide plate (19) and a linkage bolt. Thus, there is provided a vehicular instrument-mounting structure capable of inhibiting collision of a power control device or other vehicle-mounted instrument with another member, and inhibiting damage caused to the power control device or other vehicle-mounted instrument during a vehicle collision.
摘要:
Provided is an improved cooler-integrated semiconductor module.A semiconductor module (100) includes a plurality of cooling plates (12), and a plurality of flat-plate semiconductor packages (5) and flat-plate device packages (2). The semiconductor packages (5) each include a semiconductor element housed therein. The device packages (2) each include an electronic component housed therein, the electronic component being different in type from the semiconductor element housed in the semiconductor elements. The cooling plates (12) are laminated alternately with the semiconductor packages (5) or the device packages (2). Connecting tubes (13a, 13b) having refrigerant flowing therein are provided between the cooling plates (12) adjacent to each other.
摘要:
A variable valve timing system comprises a first timing member driven by the engine, a second timing member rotatably fixed to the crankshaft, a helical device engaged between the first and second timing members and including a piston movable for adjusting an angular position between the first and second timing members, a hydraulic circuit device for selectively applying a hydraulic pressure to the piston for selectively moving the piston to adjust the angular position, a damper device on the first and second timing members for hydraulically damping rotational vibrations between the first timing member and the second timing member, and a notch formed at least on one of the first timing member and the second timing member in the damper device. Torque variations applied to the second timing member relative so the first timing member do not cause a change in the angular position.
摘要:
A vehicle equipment mounting structure that arranges a motor case, in which a rotary electric machine that drives a vehicle is housed, in an engine compartment, and that includes a PCU that controls the rotary electric machine, and an auxiliary battery that supplies electric power to the PCU. This structure includes a fixing portion that fixes the PCU onto the motor case, and a connecting portion that connects the auxiliary battery to a side member that absorbs an impact load by being crushed in a crushing direction. The connecting portion has a displaceable member that is displaceable in the crushing direction. The auxiliary battery is arranged on a vehicle front side of the PCU such that the PCU and the auxiliary battery partially overlap in the crushing direction. The auxiliary battery is arranged so as to be able to move past the PCU in response to an impact load.