Abstract:
An amplitude detection circuit using a sinusoidal input signal inputs to produce a digital output (a one or zero) is described. The circuit uses an input field effect transistor (FET) with a gate load coupled to a gate of the input FET. A drain load may be coupled to a drain of the input FET. A source load may be coupled to a source of the input FET. A controllable variable current generator provides a current to the source of the input FET, biasing the source of the input FET to a reference voltage. An input signal conductor may be coupled to the gate of the input FET. Other embodiments are described.
Abstract:
A reduced-size replica of power gate transistors may be used within a closed-loop voltage regulator to measure the average current delivered by the transistors in the non-replica power gate. The measured current is compared against a known reference current, and a feedback loop is used to modify the gate bias of the power gate and replica power gate transistors. An improved current sensing power gate replica solution may include measuring current from a small replica of the power gate and extrapolating the total current by digitally multiplying the replica current by the ratio of the size of the enabled power gates to the size of the replicas. The current through the replicas, which substantially matches the current in equivalent power gate devices, may be collected on an analog bus and conducted across a known resistor to generate a voltage that determines an estimated current of the power gate devices.
Abstract:
Macro-transistor structures are disclosed. In some cases, the macro-transistor structures have the same number of terminals and properties similar to long-channel transistors, but are suitable for analog circuits in deep submicron technologies deep-submicron process nodes. The macro-transistor structures can be implemented, for instance, with a plurality of transistors constructed and arranged in series, and with their gates tied together, generally referred to herein as a transistor stack. One or more of the serial transistors within the stack can be implemented with a plurality of parallel transistors and/or can have a threshold voltage different that is different from the threshold voltages of other transistors in the stack. Alternatively, or in addition, one or more of the serial transistors within the macro-transistor can be statically or dynamically controlled to tune the performance characteristics of the macro-transistor. The macro-transistors can be used in numerous circuits, such as varactors, VCOs, PLLs, and tunable circuits.
Abstract:
Described herein is an apparatus and system of an electrostatic discharge circuit. The apparatus comprises: a clamp transistor with a terminal coupled to a node with a power supply; and a detector to determine when the power supply crosses a first threshold, the detector to generate a trigger signal to cause the clamp transistor to remain off when the power supply on the node is below the first threshold.
Abstract:
Macro-transistor structures are disclosed. In some cases, the macro-transistor structures have the same number of terminals and properties similar to long-channel transistors, but are suitable for analog circuits in deep-submicron technologies at deep-submicron process nodes. The macro-transistor structures can be implemented, for instance, with a plurality of transistors constructed and arranged in series, and with their gates tied together, generally referred to herein as a transistor stack. One or more of the serial transistors within the stack can be implemented with a plurality of parallel transistors and/or can have a threshold voltage that is different from the threshold voltages of other transistors in the stack. Alternatively, or in addition, one or more of the serial transistors within the macro-transistor can be statically or dynamically controlled to tune the performance characteristics of the macro-transistor. The macro-transistor can be used in numerous circuits, such as varactors, VCOs, PLLs, and tunable circuits.
Abstract:
Described herein is an apparatus and system of an electrostatic discharge circuit. The apparatus comprises: a clamp transistor with a terminal coupled to a node with a power supply; and a detector to determine when the power supply crosses a first threshold, the detector to generate a trigger signal to cause the clamp transistor to remain off when the power supply on the node is below the first threshold.
Abstract:
Methods and systems to controllably steer multiple phases of a differential signal, including to generate a differential current in response to a differential voltage, to controllably steer the differential current between multiple output circuits in response to corresponding control signals, which may be out of phase with respect to one another, and to generate multiple corresponding outputs corresponding to the multiple steered phases of the current. A differential input circuit and a current steering circuit may be common to multiple output circuits, and a common offset compensation may be provided to compensate for a substantial portion of offset associated with the multiple outputs.
Abstract:
An amplitude detection circuit using a sinusoidal input signal inputs to produce a digital output (a one or zero) is described. The circuit uses an input field effect transistor (FET) with a gate load coupled to a gate of the input FET. A drain load may be coupled to a drain of the input FET. A source load may be coupled to a source of the input FET. A controllable variable current generator provides a current to the source of the input FET, biasing the source of the input FET to a reference voltage. An input signal conductor may be coupled to the gate of the input FET. Other embodiments are described.
Abstract:
Methods and systems to controllably steer multiple phases of a differential signal, including to generate a differential current in response to a differential voltage, to controllably steer the differential current between multiple output circuits in response to corresponding control signals, which may be out of phase with respect to one another, and to generate multiple corresponding outputs corresponding to the multiple steered phases of the current. A differential input circuit and a current steering circuit may be common to multiple output circuits, and a common offset compensation may be provided to compensate for a substantial portion of offset associated with the multiple outputs.
Abstract:
Disclosed herein are embodiments of an LC-type VCO with multiple operational frequency bands having reasonably similar frequency vs. control signal slopes.