摘要:
Methods, systems, and devices are described for providing flexible bandwidth waveforms and channels for wireless communication. Embodiments may utilize portions of spectrum that may not be large enough to fit a standard or normal waveform. Chip rates may be adapted dynamically to generate and/or to receive flexible bandwidth waveforms to fit these portions of spectrum. Scaling factors and/or center frequencies may also be utilized to generate flexible waveforms. A mobile device may receive adjustment information from a base station so that the mobile device may dynamically adjust its chip rate to utilize a flexible bandwidth channel. A base station may simultaneously transmit on a normal bandwidth channel and a flexible bandwidth channel in some cases. Some flexible bandwidth waveforms may be utilized that are larger, or take more bandwidth, than a normal waveform. Flexible bandwidth may also be utilized to split and/or combine frequency channels.
摘要:
Methods and apparatus are disclosed for providing improved service to wireless devices in a radio access network (RAN). This is accomplished through affording cooperative arrangements wherein a helper mobile device having a good link to the RAN assists another mobile device having a poorer quality link to access the RAN, thereby offering improved service. The arrangement includes an out of band link between the mobile devices that does not use the same radio access technology as the RAN. Additionally, an incentive scheme provides credit to users of the assisting devices that is configured to encourage and sustain future cooperative arrangements. Credit may be transferred from a user of the assisted device to the user of the helper device as compensation. Further, an operator of the RAN may also inject credit to users of helper devices to incentivize and sustain future cooperative arrangements.
摘要:
A mobile device provides first information to an access point over an out-of-band wireless link. The access point uses the first information to coarsely synchronize with a macrocell base station. The access point transmits a low power pilot signal that is formed using a pseudo-random noise (PN) sequence. The mobile device uses the out-of-band wireless link to provide second information to the access point that indicates a PN phase of the pilot signal with respect to a reference time point. The access point uses the second information to finely synchronize with the macrocell base station. The mobile device communicates with a mobile operator core network through the access point using an in-band wireless link to the access point. The mobile device compensates for propagation delay when obtaining time information. The mobile device provides additional information to the access point, which the access point uses to adjust for continued clock drift.
摘要:
A method of transmitting data packets with a wireless communication device includes requesting a preconfigured data radio bearer (DRB) from a base station during a connection request; receiving the preconfigured DRB from the base station in response to the request; and providing security configuration information to a network control entity that provides the security configuration information to the base station.
摘要:
A method for macrocell-to-femtocell hand-in includes: communicating a non-directed proximity request message from a femto-proxy system over an out-of-band (OOB) channel, the proximity request message configured to be received by any of a plurality of access terminals when in proximity to the femto-proxy system, the femto-proxy system comprising an OOB radio and a femtocell communicatively coupled with a core network element; receiving a proximity response message over the OOB link from an access terminal of the plurality of access terminals in response to the proximity request message, the proximity response message indicating that the access terminal is in proximity to the femto-proxy system; communicating a presence indication from the femtocell to a core network element indicating proximity of the access terminal to the femtocell; and facilitating active hand-in of the access terminal from a source macrocell of a macro network to the femtocell.
摘要:
Management of user equipment (UE) proximity indications to femto access points is provided using out-of-band (OOB) signals. To obtain OOB identification information on the femto access point, the UE determines the OOB identification information when in proximity to cells neighboring the femto access point. This OOB information is stored in a search information database (SID) of the UE and related to in-band information on the femto access point. To later determine proximity to the femto access point, in response to detecting its presence within a fingerprint area around the femto access point, a search for the femto access point is triggered using the OOB radio resources and OOB identification information associated with the femto access point in the SID. When the UE detects the femto access point using the OOB radio resources, the UE transmits a proximity indication to its serving base station over the in-band radio link.
摘要:
Method and system for femtocell positioning are disclosed. An apparatus includes one or more processors, a femtocell positioning module configured to determine position of a femtocell, and a memory configured to store position of the femtocell. The femtocell positioning module, working with the one or more processors, includes logic configured to identify one or more wireless terminals and receive location information from the one or more wireless terminals via a first communication channel and determine position of the femtocell in accordance with the location information from the one or more wireless terminals. The femtocell positioning module further includes logic configured to obtain multiple set of range measurements between the femtocell and the one or more wireless terminals, logic configured to determine position of the femtocell in accordance with the location information and the multiple set of range measurements between the femtocell and the one or more wireless terminals.
摘要:
Methods, systems, and devices for separating signaling data and traffic data onto separate carriers for wireless communications systems are provided. Some embodiments utilize flexible bandwidth that may utilize portions of spectrum that may not be big enough to fit a normal waveform through utilizing flexible waveforms. Flexible bandwidth systems may lead to reduced data rate on the signaling or other channels. Separating the signaling and the data traffic into different flexible bandwidth carriers so that assigned resources can be customized to different traffic patterns may address this issue. In some embodiments, the signaling data is received and/or transmitted over a first carrier separate from any other traffic data. For example, the signaling data may be received and/or transmitted over the first band carrier without any other traffic data. The traffic data and/or network data associated with the signaling data may be received and/or transmitted over a separate, second carrier.
摘要:
Methods, devices, and instructions stored in non-transitory computer-readable medium are provided for adaptively adjusting when a mobile device requests fast dormancy (FD) by determining when applications executing on the mobile device stop using a connection to a cellular telecommunications network. An adaptive fast dormancy controller function executing on a processor of the mobile device monitors network traffic activity by the applications. The adaptive fast dormancy controller function may determine that an open network connection should be released using a device traffic inactivity timer that times durations of network inactivity by applications. The duration of the device traffic inactivity timer may be adjusted based upon observed application and/or network conditions. Multiple device traffic inactivity timers may be used to enable timing traffic inactivity of each application or groups of applications executing on the mobile device.
摘要:
Systems and methods for distributed computing between communication devices. A femto node is treated as a trusted extension of a user equipment and performs processing tasks on behalf of the user equipment. The femto node is also treated as a trusted extension of network servers and performs services on behalf of the network servers. Tasks are thus distributed between the network servers, the femto node and one or more user equipments. The tasks include processing data, filtering incoming messages, and caching network service information.