摘要:
A system and method for creating multiple test case scenarios from one test case by shuffling the test case instruction order while maintaining relative sub test case instruction order intact is presented. A test case generator generates and provides a test case that includes multiple sub test cases to a test case executor. In turn, the test case executor recursively schedules and dispatches the test case with different shuffled instruction orders to a processor in order to efficiently test the processor. In one embodiment, the test case generator provides multiple test cases to the test case executor. In another embodiment, the test case generator provides test cases to multiple test case executors that, in turn, shuffle the test cases and provide the shuffled test cases to their respective processor.
摘要:
A system and method for creating multiple test case scenarios from one test case by shuffling the test case instruction order while maintaining relative sub test case instruction order intact is presented. A test case generator generates and provides a test case that includes multiple sub test cases to a test case executor. In turn, the test case executor recursively schedules and dispatches the test case with different shuffled instruction orders to a processor in order to efficiently test the processor. In one embodiment, the test case generator provides multiple test cases to the test case executor. In another embodiment, the test case generator provides test cases to multiple test case executors that, in turn, shuffle the test cases and provide the shuffled test cases to their respective processor.
摘要:
A system and method for re-executing a test case and modifying the test case's effective addresses, effective segment identifiers (ESIDs), and virtual segment identifiers (VSIDs) in order to fully test a processor's SLB and TLB cells is presented. A test case generator generates a test case that includes an initial set of test case effective addresses, an initial set of ESIDs, and an initial set of VSIDs. The test case executor uses an effective address arithmetic function and a virtual address arithmetic function to modify the test case effective addresses, the ESIDs, and the VSIDs on each re-execution that, in turn, sets/unsets each bit within each SLB and TLB entry. In one embodiment, the invention described herein sequentially shifts segment lookaside buffer entries, whose ESIDs are in single bit increments, in order to fully test each ESID bit location within each SLB entry.
摘要:
A system and method for re-executing a test case and modifying the test case's effective addresses, effective segment identifiers (ESIDs), and virtual segment identifiers (VSIDs) in order to fully test a processor's SLB and TLB cells is presented. A test case generator generates a test case that includes an initial set of test case effective addresses, an initial set of ESIDs, and an initial set of VSIDs. The test case executor uses an effective address arithmetic function and a virtual address arithmetic function to modify the test case effective addresses, the ESIDs, and the VSIDs on each re-execution that, in turn, sets/unsets each bit within each SLB and TLB entry. In one embodiment, the invention described herein sequentially shifts segment lookaside buffer entries, whose ESIDs are in single bit increments, in order to fully test each ESID bit location within each SLB entry.
摘要:
A system and method to reduce verification time by sharing memory between multiple test patterns and performing results checking after each test pattern executes one time is presented. A test pattern generator generates multiple test pattern sets, each of which including multiple test patterns. Each test pattern set is executed by a corresponding thread/processor until each test pattern included in the test pattern set has executed at least once. After all test patterns have executed at least once, a test pattern executor performs a memory error detection check to determine whether the system is functioning correctly. Since the invention described herein waits until all test patterns have executed before performing a memory error detection check, less time is spent on memory error detection checks, which allows more time to execute test patterns.
摘要:
A system and method to reduce verification time by sharing memory between multiple test patterns and performing results checking after each test pattern executes one time is presented. A test pattern generator generates multiple test pattern sets, each of which including multiple test patterns. Each test pattern set is executed by a corresponding thread/processor until each test pattern included in the test pattern set has executed at least once. After all test patterns have executed at least once, a test pattern executor performs a memory error detection check to determine whether the system is functioning correctly. Since the invention described herein waits until all test patterns have executed before performing a memory error detection check, less time is spent on memory error detection checks, which allows more time to execute test patterns.
摘要:
A system and method for pseudo-randomly allocating page table memory for test pattern instructions to produce complex test scenarios during processor execution is presented. The invention described herein distributes page table memory across processors and across multiple test patterns, such as when a processor executes “n” test patterns. In addition, the page table memory is allocated using a “true” sharing mode or a “false” sharing mode. The false sharing mode provides flexibility of performing error detection checks on the test pattern results. In addition, since a processor comprises sub units such as a cache, a TLB (translation look aside buffer), an SLB (segment look aside buffer), an MMU (memory management unit), and data/instruction pre-fetch engines, the test patterns effectively use the page table memory to test each of the sub units.
摘要:
A system and method for pseudo-randomly allocating page table memory for test pattern instructions to produce complex test scenarios during processor execution is presented. The invention described herein distributes page table memory across processors and across multiple test patterns, such as when a processor executes “n” test patterns. In addition, the page table memory is allocated using a “true” sharing mode or a “false” sharing mode. The false sharing mode provides flexibility of performing error detection checks on the test pattern results. In addition, since a processor comprises sub units such as a cache, a TLB (translation look aside buffer), an SLB (segment look aside buffer), an MMU (memory management unit), and data/instruction pre-fetch engines, the test patterns effectively use the page table memory to test each of the sub units.